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ABSTRACT
Algorithmic Complexity Vulnerabilities (ACV) are a class of vul-
nerabilities that enable Denial of Service Attacks. ACVs stem from
asymmetric consumption of resources due to complex loop ter-
mination logic, recursion, and/or resource intensive library APIs.
Completely automated detection of ACVs is intractable and it calls
for tools that assist human analysts.

We present DISCOVER, a suite of tools that facilitates human-on-
the-loop detection of ACVs. DISCOVER’s workflow can be broken
into three phases - (1) Automated characterization of loops, (2) Selec-
tion of suspicious loops, and (3) Interactive audit of selected loops.
We demonstrate DISCOVER using a case study using a DARPA
challenge app. DISCOVER supports analysis of Java source code
and Java bytecode. We demonstrate it for Java bytecode.
Demo Video: https://youtu.be/LtaOYxo7AWI
Tool:https://ensoftcorp.github.io/loop-comprehension-toolbox
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1 INTRODUCTION
Algorithmic Complexity Vulnerabilities (ACV) are a class of vul-
nerabilities that can be exploited to mount a denial of service (DoS)
attack. [5]. MITRE describes the effect as “An algorithm in a product
has an inefficient worst-case computational complexity that may
be detrimental to system performance and can be triggered by an
attacker, typically using crafted manipulations that ensure that the
worst case is being reached.” [14]. In contrast with traditional DoS
attacks, which involve flooding the target server with redundant
inputs to block a legitimate request, ACVs allow DoS attacks with
very few requests or a small input.

Listing 1: XML-bomb
<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ELEMENT lolz (# PCDATA)>
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol←↩

;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&←↩

lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&←↩

lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&←↩

lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&←↩

lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&←↩

lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&←↩

lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&←↩

lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&←↩

lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

Let’s illustrate an ACV with an example. We will use the example of
a billion laughs attack on an XML parser [1]. A standard XML file
contains a “contents section” with instances of predefined entities
of the form <!ENTITY name "value">, where name is the variable name
for the entity and value is its definition. An entity can refer to
another entity using by value of the form &entityname. When an XML
parser encounters such entities while parsing the contents section,
it will replace the value with the definition of the referenced entity
and continue parsing. Unchecked expansion allows an attacker to
specify a huge XML document using a small number of entities
by repetitively referencing the entity definitions. Listing 1 shows
a standard exploit [1]. It uses 10 different XML entities (lol-lol9)
where lol is defined as "lol". All other entities are defined as 10 of
some other entity. It contains only one instance of lol9. The parser
will expand it to 10 lol8s, each of which is expanded to 10 lol7s and
so on. It results into a document of over 3 GB. In other words, if left
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unchecked the XML expansion consumes an exponential amount of
resources in the worst-case. If the application using the XML parser
is not handling this worst-case then it is said to contain an ACV
which can be exploited to deny memory resources to benign users.
An example would be Microsoft Word, which uses an XML-like
parser to load its documents. If a user attempts to open a word
document containing the code in Listing 1, then Word will attempt
to load the expanded document in the memory, and in most cases
will hang. At the time of writing this paper, Word still contains this
ACV.
In recent years, exploits using ACVs are on the rise. Crosby and
Wallch [5] coined the term ACV in 2003 and theorized an attack on
hash tables. In 2011, Klink and Walde [12] demonstrated the attack
and noted that it plagues hash table implementations in almost
all the widely used libraries. This attack was further refined and
demonstrated by Bernstein et al, a year later [2]. It is imperative
that we find ways to mitigate the risks posed by ACVs and hence
develop technology to detect ACVs.
This motivated the DARPA Space/Time Analysis for Cybersecu-
rity (STAC) program [6]. It called for a novel human-on-the-loop
approach to detect ACVs as completely automated detection of
ACVs is intractable [6]. The program artifacts that may contain an
ACV include loops, recursion, or resource-intensive library APIs [8].
We focus on loops and library calls. As completely automated and
precise analysis of loop termination is intractable, ACVs need auto-
mated analyses which can assist human analysts. ACVs also require
tools that can help the analyst visualize interactions with library
calls. In this paper, we present the tool DISCOVER, the output of
our experience on the STAC program. DISCOVER is a suite of loop
analysis tools which are geared at detecting ACVs. Its automated
loop characterizations help in filtering the loops and library calls
likely to lead to an ACV, while its interactive capabilities help a
human to verify the presence of an ACV in the filtered program
artifacts.
The rest of the paper is organized as follows. Section 2 describes
the workflow used by analysts to detect ACVs using DISCOVER.
Section 3 describes infrastructure of DISCOVER. Section 4 describes
a case study to demonstrate DISCOVER.

2 DISCOVERWORKFLOW
Detection of ACVs using DISCOVER can be described in three
phases:
(1) Automated Loop Characterization: In the first phase, the an-

alyst runs the automated loop analysis which characterizes
every loop in the app using several pre-defined characteriza-
tions. These characterizations are computed using two loop
abstractions: Termination Dependence Graph (TDG) and Loop
Projected Control Graph (LPCG). The output of this phase is
a Loop Catalog with their characterization. The details of this
phase are described in our previous work [4].

(2) Automated Filtering of Loops: ACVs are typically rooted in
loops as loops are often the limiting factor of the computational
complexity of the program. The Loop Catalog is designed to
select loops more likely to contain an ACV. The analyst com-
bines the information captured by the catalog with a high-level
understanding of the app to narrow down the possibilities of
ACVs.

Table 1: JDK Subsystems
Subsystems APIs belonging to this subsystem

JavaCore java.util, java.lang
Hardware javax.sound, javax.sound.midi
IO java.nio, java.io
Network java.net, javax.net, java.rmi
RMI org.omg.CORBA, javax.rmi.CORBA
Database javax.sql, javax.sql
Log java.util.logging
Serialization javax.xml.bind, javax.xml.ws.soap
Compression java.util.jar, java.util.zip
UI java.applet, java.awt, javax.swing
Introspection java.lang.reflect, java.lang.invoke
Iterables java.util.List, java.util.Vector etc.
Garbage Collection java.lang.ref
Security java.security, javax.security etc.
Crypto javax.crypto
Math java.math
Random java.util.Random etc.
Threading java.util.concurrent etc.
Data Structure java.beans, java.text etc.
Collection java.util.collection
Stream java.util.stream
Iterator java.util.Iterator
Spliterator java.util.Spliterator
Functional java.util.Function

(3) Interactive Audit of filtered loops: Analyst then makes use of
the interactive capabilities of DISCOVER to audit the filtered
loops and hypothesizes the presence of ACV, if any. This hy-
pothesis can be checked using dynamic analysis techniques.
With this workflow, our team was ranked to have the most
accurate analysis on the final two competitive evaluations of
the STAC program.

3 DISCOVER INFRASTRUCTURE
DISCOVER was developed using Atlas [7] and is capable of analyz-
ing Java bytecode and Java source code. It uses Soot [18] to convert
Java bytecode into Jimple for analysis. DISCOVER infrastructure is
divided into four parts: (1) Loop Abstractions, (2) Subsystems, (3)
Loop Catalog, and (4) Interactive Views.

3.1 Loop Abstractions
DISCOVER uses two Loop Abstractions to characterize loops: Ter-
mination Dependence Graph (TDG) and Loop Projected Control
Graph (LPCG). [4]
Termination Dependence Graph (TDG): TDG of a loop is an
intraprocedural data flow slice which captures: (a) the data flow that
influences the termination condition of the loop, (b) modification
of data within the loop. A summary of the interprocedural data
flow dependencies is computed along with the TDG to capture the
complete picture.
This abstraction serves as the foundation for developing loop ter-
mination patterns, each pattern implying a specific mode of termi-
nation for the loop. TDG is used to compute Loop Monotonicity [4]
which is a complexity metric for loop termination. Loop Termina-
tion Patterns implemented in DISCOVER are defined using Loop
Monotonicity.
Loop Projected Control Graph (LPCG): LPCG of a loop is a
compact representation of relevant control flow within the loop.
The relevant control flow includes loop termination, loop control
variables and callsites within the loop.
The compaction is derived from Projected Control Graph (PCG),
a projection of the CFG that retains only the relevant execution
behaviors and elides duplicate paths. [16]. A mathematical defi-
nition of the PCG and an efficient algorithm to compute PCGs
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Figure 1: Loop Catalog View

are presented in [17]. DISCOVER uses COMB, a toolbox of PCG
utilities [11].
LPCG [4] is a PCG with following considered as relevant: (a) Loop
Header, (b) Loop Termination Conditions, and (c) data flow and
callsites captured within TDG. LPCGs are useful to understand the
loop termination logic and can thus be used by a human to isolate
paths with asymmetric resource consumption.

3.2 Subsystems
Dietrich et al [8] point out that ACVs can also be caused due to
resource intensive library APIs. This effect is amplified if the APIs
are present in loops. High-level understanding of library APIs also
helps in characterizing the functionality of loops and help analysts
hypothesize ACVs. For example, a loop containing a call to an
I/O API may be reading or writing to a file. If it is performing an
unchecked write operation, then it may end up consuming a large
amount of memory.
With this motivation, we categorized JDK APIs into subsystems. A
total of 24 subsystems are codified into DISCOVER. Table 1 lists
the subsystems and examples of the packages of APIs they contain.

3.3 Loop Catalog
DISCOVER uses the loop abstractions to characterize every loop in
the app. This captured information is collected in what is referred
to as the Loop Catalog. Loop Catalog consists of the following
information:
• Source Correspondence: Location of the loop in the app.
• Loop Monotonicity: Whether the loop termination is complex or
not.
• Loop Termination Pattern: A triple of {Monotonicity, Type of con-
trol variable, Dependency of control variable }. These patterns
imply modes of termination. For example, a monotonic primitive
local loop is of the form for(i=0;i<n;i++), implying a simple termi-
nation behavior. Loop Catalog also reports conservative bounds
on the number of iterations.
• Reachability: Whether the loop is reachable from the entry point
to the app or not.
• Loop BodyDescription: This includes information on the branches
contained within the loop, branches governing the loop, and
lambda expressions (which may hide loops) contained within the
loop.
• Subsystem Interactions: The subsystems thatwere invokedwithin
the loop.

3.4 Interactive Views
In order to make all this information easily accessible to the analyst,
we developed interactive views which aid in ACV detection. These
views fall into two categories, Loop Catalog View and Smart Views.
Loop Catalog View provides access to the information captured
within the loop catalog. Figure 1 shows the loop catalog view. The
captured information is presented in a spreadsheet format. Each
row in this view corresponds to a loop in the app. Each column
corresponds to a characteristic of the loop that can be used as a
filter to select loops. The view allows the analyst to select loops
of interest by clicking on the corresponding rows. Selection of
multiple loops is allowed. The analyst can either retain or delete
the selected loops. Additionally, they can tag the selected loops to
refer them later.
Smart views are part of the interactive visualization infrastructure
provided by Atlas [7]. These can be used to invoke canned analyses
to on-the-fly. DISCOVER includes smart views which can compute:
(1) TDG, (2) LPCG, (3) Loop Body, (4) Loop Subsystem Interactions.
We note that these views can interact with each other and can be
composed together to audit apps to detect ACVs.
4 CASE STUDY
We present a case study to illustrate how to detect ACVs in an app
called Gabfeed_3, developed as a challenge for the STAC program,
using DISCOVER. The source code of the app, along with other
challenge apps, is available on GitHub [15]. Gabfeed_3 is a web
forum software which allows users to post messages on a server and
search the posted messages. The messages are stored in sorted order
using a custom merge sort. We received bytecode for the app (not
the source code), which we converted to Jimple, an intermediate
representation of Java bytecode. We use the Jimple code for analysis.
Gabfeed_3 consists of 23, 882 lines of Jimple.
Background: DARPA created several challenge apps in order to
evaluate the tools developed in the STAC program. Let’s first shed
some light on these challenge apps. DARPA contracted security
professionals to develop apps containing vulnerabilities based on
real-world software. These apps are fairly large and the vulnerable
code is hardened against detection techniques by obfuscating the
code. Each app comes with a description of a vulnerability and
analysts are tasked with detecting vulnerabilities that match the
given description. This description includes the type of resource
consumption (space or time), the threshold for resource consump-
tion, and the constraints on input size. In order to be considered a
valid ACV, the detected ACV by a tool must exceed the threshold
while staying within the input constraints. Most of these apps are
already publically available on GitHub [15] and DARPA plans to
release the remaining apps in the near future.
4.1 Phase 1: Generate Loop Catalog
DISCOVER automatically characterized and cataloged all loops in
the app in the Loop Catalog. Gabfeed_3 consists of 112 loops.

4.2 Phase 2: Filtering Loops
The goal is to isolate a subset of loops that are likely to contain an
ACV. This filtering is done using the information captured by the
Loop Catalog and a high-level understanding of the app.
In this case study, we employed the following sequence of criteria
to filter loops.
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Figure 2: LPCG of the vulnerable loop. The zoomed in
branch creates asymmetry with only one with an expensive
operation

• Reachable Loops: In order to trigger the vulnerability, the loop
must be reachable from the Control Flow Entry points of the
app. These entry points were identified based on the domain
knowledge of the app. Additionally, the attacker input to these
entry points must also reach the loop body. Using loop catalog,
the analyst selects only those loops which are reachable from the
input to the app. # Loops Retained: 75/112
• Network Interactions: Gabfeed_3 is a web application. Hence,
the inputs provided to the app are processed using network APIs.
Thus, the loop must make use of the network subsystem to pro-
cess the input. Hence, the analyst selects only those loops which
interact with the network subsystem. # Loops Retained: 35/112
• Loop Monotonicity: Monotonic Loops are loops with simple ter-
mination logic and are typically not likely to contain an ACV.
Thus, the analyst selects only non-monotonic loops. # Loops Re-
tained: 14/112
• Loop Termination Pattern: Loops whose termination is depen-
dent on well-understood APIs have a well-understood upper
bound and are not likely to contain ACVs. Gabfeed_3 has 5 such
loops which are used to read from files using readline(...) API.
Loop Catalog captures this information by identifying the loop
termination pattern. Analyst focuses on the remaining loops and
discards these 5 loops. # Loops Retained: 9/112

At this point, the analyst decides to interactively scrutinize these 9
loops.
4.3 Interactive Audit
Loop Catalog reveals that these 9 loops are neatly separated in three
different components of Gabfeed_3, namely Sorter, HashMap, and
TreeNode. The analyst used LPCG smart view to look at LPCGs of
these 9 loops to search for paths which may lead to asymmetric
consumption of resources. We discovered that out of the 9 loops,
the loop in the method Sorter.changingSort(...) has a peculiar LPCG
shown in Figure 2. The LPCG reveals the presence of a differential
branch. This branch (zoomed in Figure 2) creates asymmetry as it
has only one path with a callsite. This callsite invokes the method
Sorter.mergeHelper(...) which handles the merge operation of the
sort. This conditional merging is suspicious and further inspec-
tion reveals that there is also an unconditional merge before the

suspicious callsite. Turns out, that if the number of messages is
multiple 8 then this sorting algorithm merges every pair of sublists
twice. The second merge is redundant and only adds to the cost of
the sort. Thus, analyst hypothesized that if the attacker makes the
number of posted messages multiple of 8, then the server is going
to take a long time to sort the posted messages. This will increase
the response time to any queries made for the posted messages by
benign users. Using dynamic analysis, this hypothesis was proved.

5 RELATEDWORK
This paper is based on our prior work [4]. For a detailed list of
related works, we refer to [4], now we will summarize only the
most relevant ones.
There is a multitude of techniques available which are aimed at
precisely summarizing loops [10, 13, 20]. To assess the usefulness of
the existing techniques, we performed the following experiments.
We curated 15 representative loop snippets from the challenge apps
provided by DARPA. These snippets are available on GitHub [3].We
tried to summarize these loops using Proteus [20] that received the
2016 Distinguished FSE Paper award. None of the 15 loops could
be precisely summarized by Proteus. We think that these loops
can be used to further improve the existing formal verification
approaches and loop summarization techniques. CLAPP [9] has
a similar approach to us and can identify loops with calls to a
set of high-risk APIs as labeled by Android developers. CLAPP is
designed for Android code and not for arbitrary Java code. Also
CLAPP does not support interactive audits to facilitate human-on-
the-loop approach, which is critical to detect ACVs.
REXPLOITER [19] the only other tool we are aware of that is specif-
ically aimed at detecting ACVs. REXPLOITER detects ACVs by
identifying regular expressions that match the vulnerable input
strings. These regular expressions are extracted using an NFA-based
algorithm. They have successfully employed this approach to detect
ACVs in real-world apps. However, how does REXPLOITER fare
when there is a singular input, for which the regular expression
may not even exist, that triggers the ACV is not made sufficiently
clear. Also, REXPLOITER does not provide any interactive capabili-
ties which can make use of human domain knowledge that is often
useful in the detection of ACVs.

6 CONCLUSION
Algorithmic Complexity Vulnerabilities (ACV) can lead to denial
of service attacks. ACVs are rooted in loops, recursions, and/or
resource-intensive library APIs with loops being the likeliest loca-
tion. A completely automated solution to detect arbitrary ACVs is
intractable.
We presented DISCOVER, a suite of tools developed on DARPA
Space/Time Analysis for Cybersecurity (STAC) [6] program, that
assists a human analyst to detect ACVs. Its interactive capabili-
ties enable a human-on-the-loop audit workflow. We demonstrate
DISCOVER using a case study from DARPA challenge apps.
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