
Human-on-the-loop Automation for Detecting
Software Side-Channel Vulnerabilities?

Ganesh Ram Santhanam1, Benjamin Holland1, Suresh Kothari1, Nikhil
Ranade2

1Iowa State University, Ames, Iowa 50011 | 2Ensoft Corp., Ames, IA 50010
{gsanthan,bholland,kothari}@iastate.edu;nikhil@ensoftcorp.com

Abstract. Software side-channel vulnerabilities (SSCVs) allow an at-
tacker to gather secrets by observing the differential in the time or space
required for executing the program for different inputs. Detecting SS-
CVs is like searching for a needle in the haystack, not knowing what the
needle looks like. Detecting SSCVs requires automation that supports
systematic exploration to identify vulnerable code, formulation of plau-
sible side-channel hypotheses, and gathering evidence to prove or refute
each hypothesis. This paper describes human-on-the-loop automation to
empower analysts to detect SSCVs. The proposed automation is founded
on novel ideas for canonical side channel patterns, program artifact fil-
ters, and parameterized program graph models for efficient, accurate,
and interactive program analyses. The detection process is exemplified
through a case study. The paper also presents metrics that bring out the
complexity of detecting SSCVs.

1 Introduction
Smartcards and satellite TV have been compromised by side channel attacks [21].
Hackers used a timing attack against a secret key stored in the Xbox360 CPU to
forge an authenticator and load their own code [20]. Intelligence agencies have
often relied on side-channel attacks to monitor their foes. Side-channel attacks
have become a powerful threat to cryptography. One of the first papers on side
channel attacks showed how to recover an RSA private key merely by timing
how long it took to decrypt a message [18].

The possibilities are open-ended for the ways various program artifacts may
be used to create side channels. Attackers exploit SSCVs by presenting a set of
inputs and observing the space or time behaviors to construe the secret. The
input could vary from HTTP requests to multiple log-in attempts depending on
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the application. The observable differential behaviors could be execution time,
memory space, network traffic, or some output patterns of application-specific
significance.

Since SSCVs are open-ended, the proposed approach is that of human-on-
the-loop [10] automation. It incorporates: application-agnostic automation to
determine hotspots, interactive automation to hypothesize SSCVs, and dynamic
analysis for validating SSCVs. The automation uses static and dynamic analyses
with program graphs as abstractions. We have developed tools that can handle
Java source code or Java bytecode. The analyses are integrated and equipped
with an interactive and compact visualization so that the analyst can experiment
with and gain understanding of the program structure and behavior and apply
that understanding to detect SSCVs. The SSCV toolbox is built using the Atlas
platform [11].

The major research contributions are:
– A novel human-on-the-loop automation to detect SSCVs: It synthesizes a com-

bination of non-trivial program analyses with program graphs as the enabling
abstraction.

– Interactive automation: An interactive automation enabled by software visu-
alization and querying capability to assist with hypothesizing and gathering
evidence for side channels.

– Case study and complexity metrics: The case study brings out the significance
of the proposed automation and how it can be used in practice. The metrics
provide insights into the complexity of analyzing software for SSCVs and serve
as a starting point for searching SSCV hot-spots in a given software.

Organization. The paper is organized as: Section 2 describes a motivating ex-
ample, Section 3 describes the overarching SSCV patterns and a detection pro-
cess, Section 4 describes fundamental challenges, Section 5 describes application-
agnostic and application-specific automation, Section 6 describes parameterized
graph models for interactive application-specific automation, Section 7 presents
experimental results, Section 8 presents a case study of detecting an SSCV,
Section 9 describes related work, and Section 10 concludes the paper.

2 Motivating Example
Consider a login application with valid user names as the secret, and the following
side channel: by observing the result (login success or failure) of multiple login
attempts and the corresponding response time, an attacker can deduce the secret.

Fig. 1: Side channel in login application

As illustrated in Fig-
ure 1, the example has two
control flow paths, one of
which includes a loop to
verify the password. Since
the loop path is taken only
if the user name is valid, ob-
serving the longer time it
takes for this path creates



the side channel. The programming pattern that creates the side channel in
time includes: (a) the differential time on two control flow paths, (b) the loop
that creates the differential, and (c) the branch condition (we will refer to it
as differential branch) which governs the differential paths is tied to the secret.
This example illustrates one of the overarching SSCV patterns proposed later
(Section 3.2). This is an example of side channel in time. This example may also
contain a side channel in space, if the application returns responses of different
sizes to the client when the user name is valid and when the user name is invalid.

3 SSCV Detection Process

Detecting SSCVs is a nascent field of research. We are not aware of any literature
that describes a systematic process for detecting SSCVs. We describe such a
process as a starting point for developing the required automation.

Let us start by defining a three dimensional variability spectrum shown in
Figure 2 corresponding to fundamental SSCV attributes: entry points, potential
secrets, and programming constructs or artifacts causing differential behavior.
Adversaries use entry points to provide inputs to induce differential behaviors,
secret types are the broad categories of secrets that adversaries target, and ob-
servables are the space or time behaviors produced by program executions.

Software Side Channels

Conditions governing Loops Conditions Governing Library API Calls Exceptions Loop termination conditions Loops amplifying weak SC
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Fig. 2: Three variability dimensions of SSCVs

3.1 Human-on-the-loop Detection

Detecting SSCVs requires the following: (1) narrow down the possibility of SSCVs
to a set of relevant program artifacts, (2) scrutinize these relevant artifacts to
hypothesize plausible side channel exploits, and (3) employ dynamic analysis to
confirm or reject the exploit hypotheses.
Phase I - Application-agnostic Analysis: Phase I is to pre-compute rele-
vant program artifacts that serve as the foundation for the rest of the analysis.
The challenge is to characterize relevant program artifacts. As discussed later,
we have developed program artifact characterizations relevant to SSCVs. This
automation is application-agnostic and it includes important program artifacts
such as entry points, potential secrets, loops and branches, along with attributes
relevant to SSCVs. For example, we use the DLI algorithm [29] to identify all
loops in the bytecode, and characterize each loop based on attributes such as
which library APIs it invokes (e.g., file, network, collection, etc.). The outcome
of Phase I is a catalog of relevant program artifacts. The supporting application-
agnostic automation is described in Section 5.2.



Phase I can reveal suspicious artifacts such as highly complex loops for op-
erations that are often performed in practice by using library routines (e.g. a
complex sorting loop). We call such artifacts smells and produce them as a part
of Phase I.
Phase II - Application-specific Interactive Analysis: The challenge is to
apply application-specific knowledge to develop hypotheses about SSCVs. The
applications are often very large and the analyst is not expected to be intimately
familiar with the code or the internals of the app. The analyst is expected to
explore the app systematically to come up with SSCV hypotheses.

This is achieved in two steps:
1. Select a subset of program artifacts likely to lead to SSCVs.
2. Scrutinize selected program artifacts for the possibility of SSCVs to hypoth-

esize how they could be exploited.
To facilitate the first step, we have automated filters based on the attributes
in the program artifact catalog. The analyst can select program artifacts from
the catalog that satisfy a combination of attributes. For example, if the analyst
identifies that a collection in the app is the secret, he can select all loops (1)
whose termination depends on the size of a collection, and (2) that perform file
writes (contain callsites to file write APIs). The purpose of the filtering is to
narrow down the likelihood of SSCVs to a small set of program artifacts.

To facilitate the second step, we have interactive automation using parame-
terized graph models, described in Section 6.
Phase III - Automatic Instrumentation: The challenge is to enable the
analyst to validate or refute the hypotheses developed in Phase II. For this, the
analyst needs to instrument relevant parts of the application, perform exper-
iments to record observable events, and then analyze the results to conclude
whether the hypothesized differential behavior is actually observable. The au-
tomation for this phase is not addressed in this paper. The techniques and tools
for statically-informed dynamic analysis (SID) [17] can be used for Phase III.

3.2 Overarching SSCV Patterns
We propose overarching SSCV patterns as guideposts to analysts. We have de-
signed the detection process and the supporting automation to facilitate analysis
using these guideposts. The patterns are formulated around: (a) program arti-
facts that create space or time behaviors (loops or library calls), (b) program
artifacts such as branches or exception handling mechanisms that create differ-
ential paths.

The five overarching patterns presented here are derived from our study of
about 40 DARPA apps and also the reported crypto side-channel attacks [8,9,25]
which amount to SSCVs. The example in Section 2 illustrates the first pattern.
1. Differential behaviors caused by loops and governing branch condition: The

differential behavior is due to the presence of a loop in one path (as illus-
trated in the motivating example), or loops with different observable resource
consumption in two different paths. In either case, the paths are governed
by a branch condition predicated on the input and/or secret.



2. Differential behaviors caused by Library APIs and governing branch condi-
tion: The differential behavior here is due a branch condition predicated on
the input/secret governing a path involving a call to a library API that can
cause significant resource consumption (e.g., large array allocation) or pro-
duce some other distinct observable behavior (e.g., send a network packet or
file I/O) that is absent in the other path governed by the branch condition.

3. Differential behaviors caused by exceptions: As exceptions trigger runtime
control flow jumps, exception handlers for operations on the input/secret
involving resource consuming loops or library calls can cause differential
behavior.

4. Differential behaviors caused by loop termination branch conditions: When
the secret is related to the number of iterations of a loop, the loop’s termi-
nation branch condition itself serves as the governing branch condition for
differential behavior. For example, if the size of a collection is the secret, a
loop iterating the collection can consume time or memory proportional to
the secret.

5. Differential behaviors caused by weak side channels inside loops: The differ-
ential behavior may be caused by a weak side channel, wherein the attacker
may miss observables due to environmental noise. For example, in the second
pattern above, a network packet sent by the app in one path (governed by a
branch condition related to the secret) can be lost. However, if the governing
branch condition is present within a loop, the weak side channel is amplified
and can reveal the secret.

We have made available a repository [4] of example programs extracted from
the vulnerable DARPA apps containing SSCVs related to the above patterns.

4 Fundamental Challenges of Detecting SSCV

Let us summarize the fundamental challenges that make detection of side chan-
nels quite difficult.

4.1 Path sensitive analysis

The challenge is to perform accurate analysis to account for individual behav-
iors along each of the control flow paths. The exponential growth of the number
of paths makes the analysis difficult. The analysis must do the following: (a)
account for the execution behavior along each CFG path, and (b) exclude the
execution behavior along an infeasible path. Because of its high computational
complexity, path-sensitive analysis is avoided in practice by aggregating the ex-
ecution behaviors [2,1]. This aggregation is the major cause of the large number
of false positives and negatives in static analyses.

4.2 Characterization of program artifacts

The challenge is to characterize relevant program artifacts that can cause SSCVs.
Relevant program artifacts include application entry points, potential secrets,
and control flow constructs in the code such as loops, branches and exceptions.



It is important to characterize relevant program artifacts and their specific at-
tributes that define how the artifacts relate to the secret, how they create ob-
servable space/time behaviors, or how they create differential behaviors.

4.3 Incorporating application-specific knowledge
The challenge is to develop analyses that can account for the variability of
application-specific notions of secrets and how they are revealed. The program
artifacts obtained through application-agnostic analysis can be too many and
they have to be narrowed down to correspond to secrets and side channel mech-
anisms that are application-specific.

5 Human-on-the-Loop Automation
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Fig. 3: SSCV Detection Overview

Figure 3 gives an overview of the au-
tomation we have designed for detect-
ing SSCVs. We employ static analysis as
a funneling process to narrow down the
set of program artifacts. The funneling
process incorporates application-agnostic
automation and application-specific au-
tomation. These correspond to Phase I
and II of the detection process described
earlier.

5.1 Relevant Program Artifacts
In this subsection, we discuss the specific analyses to characterize program arti-
facts with respect to the variability dimensions discussed in Section 3.
Entry Points: Application entry points are computed as starting points for
auditing an application for SSCVs. Entry points identify the interfaces through
which an attacker can supply input to induce differential behavior in the appli-
cation. They also identify the part of the code that is reachable, thus helping
the analyst to restrict his search for SSCVs to a subset of program artifacts.

Entry points are relevant with respect to the control flow and data flow.
There are three kinds of control flow entry points corresponding to whether
the application is standalone, web application, or peer-to-peer. These are Java
main methods, HTTP request handlers defined in the application, and socket
listeners respectively. Analogously for the data flow aspect, the parameters of
the Java main methods, the parameters of the HTTP request handlers, the
return values of the callsites that read from the sockets are of interest because
it is through these interfaces that the attacker can provide inputs to induce
differential behavior in the application. The possibility of SSCVs can be restricted
to the subset of the artifacts tainted by the data flow entry points. For example, if
the analyst suspects that a web application has a side channel pattern involving
a loop (i.e., overarching SSCV patterns 1, 4, or 5), then it would suffice to audit
only loops that receive data flow from the parameters to the HTTP request
handler, namely the javax.servlet.http.HttpServletRequest objects.



Potential Secrets: An application can have several side channels but only side
channels that reveal a secret are of relevance to the analyst. Identification of
the secret in an application is therefore a critical step for the analyst to prune
the search for SSCVs. It is one of the first steps the analyst performs using
application-specific knowledge.

Secrets can be classified as data or metadata. Data secrets usually represent
contents of variables. Examples of data secrets include primitive values (e.g.,
integer representing the maximum number of allowed login attempts with invalid
password) and Strings (e.g., password or email address of administrator) defined
in the app, as well as contents of collections. Examples of metadata secrets
include the size of a String (e.g., the number of characters in the username or
password) or a collection (e.g., the number of nodes or edges in a graph). Secrets
can alternatively be classified as simple or complex. Secrets that can be deduced
by knowing the contents of a single variable in the application are simple secrets.
Secrets that are a function of multiple variables in the application are complex.
An example of a complex secret is whether a graph is strongly connected or
not. The secret here is a function of the nodes and edges in a graph that may
be individual collections. Secrets may not always be present in the code. They
can also reside in configuration files read by the application. In such cases, all
returns from callsites to the file read APIs in the JDK and the libraries used
by the application can be considered potential secrets. For example, in a login
authentication application, if the set of valid usernames is the secret and it is read
from a file or database, then artifacts corresponding to the returns of callsites
that read from files or the database query result are the potential secrets.
Differential Behavior Artifacts: Analysis of relevant loops and branch con-
ditions is key to detecting the presence of SSCV patterns in an application. A
loop or branch is relevant to detecting an SSCV pattern if its behavior depends
on the secret, i.e., predicated on the secret. For example, in the login authenti-
cation example, the loop used to verify the password is executed if the branch
predicated on the username evaluates to true, and not otherwise. Therefore, the
branch governing the loop for verifying password is relevant as it is predicated on
the secret (username). A loop or branch is also relevant to detecting an SSCV
pattern if it governs events that can be observed by the attacker such as file
I/O, network operations, etc. Such a loop or branch is also relevant as they
identify events that enable differential behavior to be observed by the attacker.
Therefore, two kinds of loops are important to reason about SSCV patterns in
an application: (a) Loops whose termination branch conditions are predicated
on secrets (SSCV Pattern 4); (b) Loops whose body contains callsites to certain
library APIs (SSCV Pattern 1,4,5). Similarly, two kinds of branch conditions are
important: (a) Branch conditions predicated on secrets (SSCV Pattern 1,2,5);
(b) Branch conditions governing certain library API calls (SSCV Pattern 2).
5.2 Application-agnostic Automation

This automation uses techniques based on classical static analyses (control flow,
data flow, loop detection, taint analyses, etc.) to generate three catalogs, one
each for: entry points in the application, potential secrets, and programming



constructs causing differential behavior in the application. The catalogs include
all entry points, potential secrets, and loops and branches relevant to detecting
SSCV patterns in the application as classified in the preceding subsections. The
loop and branch catalogs identify loops and branches that specifically govern
events related to file I/O and network operations, which are common observ-
ables in the applications we have encountered as part of our empirical study
(Section 7). This can however be extended to include loops and branches that
govern other events.

The catalog is saved within the Atlas platform as attributes of the program
artifacts in Atlas. The branches and loops that match an SSCV pattern are
tagged so the analyst can quickly select results from the catalog that match
certain tags. The analyst can also export this information as a CSV file to
facilitate spreadsheet-style filtering of the artifacts based on their attributes.

5.3 Application-specific Interactive Automation

We propose two broad categories for interactive analysis: (a) applying selective
filters to narrow down the program artifacts, (b) using graph models to detect
differential behaviors. The use of interactive analysis is brought out later through
the case study presented in Section 8.
Selective Filtering of Program Artifacts: The filters are designed to narrow
down the loops or the APIs that produce the observable space or time behaviors.
The filters place one or more constraints to select a subset of program artifacts.

In order to enable filtering, each loop in the application is characterized with
respect to the following properties: (1) nesting depth within the method contain-
ing the loop; (2) whether the loop’s termination matches a common programming
pattern (e.g., loop iterates over a collection using the Iterator’s hasNext API);
(3) whether the loop is monotonic (variables controlling the loop’s termination
are either exclusively incremented or exclusively decremented within the loop);
(4) categories of APIs (also called subsystems) invoked within the loop’s body
that indicate the kinds of observable events emitted by the loop’s execution (e.g.,
network operations, file I/O, randomization, etc.); (5) the sizes of control flow
and data flow graphs (numbers of nodes and edges) for the loop’s body; (6) the
number of callsites in the loop; (7) the number of paths within the loop that
contain and do not contain callsites. The analyst can create custom filters with
constraints on any subset of the above attributes to narrow down loops. We de-
scribe one of the commonly applied filters, namely subsystem interactions filter
that selects loops based on the categories of APIs they invoke.
Subsystem Interactions Filter (SIF): The purpose of this filter is to enable
analysts to narrow down the set of loops to loops that interact with a set of APIs.
SIF has two configurable parameters: (a) an initial set of loops, and (b) a set
of APIs. The analyst configures these parameters and invokes SIF. SIF selects
loops that invoke the selected APIs directly or indirectly via function calls.

The resulting loops can be the ones that produce observable behaviors rele-
vant to SSCVs. For example, if the analyst knows that the attacker could observe
updates to the log files, he can configure SIF with the logging APIs to get loops



which include logging. The case study in Section 8 uses SIF to narrow down to
loops involving network operations as a crucial step towards detecting an SSCV.

6 Interactive Automation: Parameterized Graph Models

Interactive automation is critically important for human-on-the-loop detection
of SSCVs. The analyst must improvise and customize the analysis because of the
open-ended possibilities for SSCVs. To be effective at it, the analyst needs to
explore the software and gain insights with the help of interactive automation.
We employ parameterized graph models as powerful abstractions for interactive
automation. The generically defined graph models such as the call graph or the
control flow graph are not customizable to solve specific problems. By not being
able to focus on only the semantics relevant for a problem, their size explodes
and they are no longer effective models to gain insights from. We employ novel
graph models that can be parameterized to be problem-specific. The goal is to
provide compact representations of software behaviors and structures relevant to
SSCVs. These graph models have been developed through our ongoing research
on graph models tailored to specific classes of cybersecurity and software safety
problems [27,17].

Table 1 lists our current graph models, their input parameters, their outputs,
and how they help the analyst in Phase II of the SSCV detection process to either
select (narrow down) program artifacts, or to scrutinize narrowed down artifacts
to hypothesize the presence of SSCV Patterns (Section 3.2).

Table 1: Interactive graph models and their use in Phase II of SSCV detection
Parameterized Graph Models Input Output Phase II activity supported
Loop Call Graph Method Reachable methods containing loops Select loops w.r.t. entry point
Loop Reachability Dataflow artifact Loops reached via dataflow Select loops w.r.t secret
Taint Source, Sink (dataflow) Taint graph from source to sink Select loops, branches w.r.t secret
Subsystem Interaction Loops/Methods, APIs Loops interacting with APIs Select loops, methods w.r.t APIs
Projected Control Method, Events Reachability preserving CFG reduction Scrutinize SSCV Pattern 1, 2, 5
Exceptional Control flow Control flow artifact CFG with exceptional flow semantics Scrutinize SSCV Pattern 3
Termination Dependence Loop header Slice w.r.t. loop’s termination condition Scrutinize SSCV Pattern 4

We describe interactive automation using two examples of parameterized
graph models: projected control graph (PCG) for intra-procedural exploration
and the loop call graph (LCG) for inter-procedural exploration.

6.1 Intra-procedural Interactive Automation

This subsection describes an intra-procedural interactive automation using the
projected control graph (PCG) [27] as a parameterized model. As noted in Sec-
tion 4, path sensitive analysis is a fundamental challenge for detecting SSCVs.
SSCVs are rooted in differential behaviors. Analyzing each path is computation-
ally impractical because the number of control flow paths grows exponentially as
2n for n non-nested 2-way branch nodes. The PCG provides an efficient and ac-
curate model to counter the path explosion issue by focusing on problem-specific
distinct behaviors as opposed to distinct paths. As brought out by the study [27],
it is an effective solution because the number of problem-specific behaviors do
not grow exponentially.



The PCG is parameterized by the set of events relevant to a problem. Events
correspond to the nodes of the control flow graph. The behavior along a control
flow path is the event trace, the sequence of events along that path. The paper [27]
formally defines the event trace, and an efficient algorithm to compute the PCG.

To create the PCG, two interactive modes are desirable in practice: (a) the
analyst selects the events interactively, or (b) the analyst invokes an automated
analyzer to create the set of events. We exemplify the two modes. Instead of
SSCVs, we use a relatively simple example of division-by-zero vulnerability to
bring out the gist of interactive automation with the PCG.

In the first interactive mode, the analyst selects the events interactively by
clicking on the control flow graph (CFG). In the second interactive mode, the
analyst invokes an analyzer to gather the relevant events. For this vulnerability,
the analyst invokes the backward slice analyzer. Let us describe the first mode
in detail. Figure 4 shows a code snippet with an instance of division-by-zero
vulnerability on line 23. The four selected nodes are tick marked, they correspond
to code lines 5, 17, 21, and 23. Instead of clicking on the CFG nodes, the analyst
could also click on these lines of code.

Figure 4 shows how the PCG gets refined as the analyst selects the events
by clicking on the CFG:
Interaction 1: Analyst clicks on two CFG nodes for statements 17 and 23. That
generates the first PCG with two branch nodes and two marked event nodes
(colored yellow).
Interaction 2: Analyst clicks on the third CFG node for statement 5. It generates
the second PCG as a refinement.
Interaction 3: Analyst clicks on the fourth CFG node corresponding to statement
21. It generates the final PCG for the given vulnerability.

Let us now discuss the significance of the final PCG. Unlike 6 paths in the
CFG, the PCG has only 3 paths corresponding to 3 distinct behaviors relevant to
the given vulnerability. The relevant behaviors (event traces) are: (a) 5,17,23; (b)
5,23; and (c) 5,21,23. The behavior (a) leads to the division-by-zero vulnerability.
The governing branch condition for these two paths is C2 = TRUE and C3 =

FALSE. Note that the path feasibility analysis is simplified. The governing branch
condition must be satisfied for the vulnerability to occur.
PCG use case in detecting SSCVs: Let us describe an use case of PCG
for detecting SSCVs. Suppose that an analyst has selected a loop L for scrutiny.
Specifically, the analyst would like to know which branch conditions in the ap-
plication govern the execution of L. This requires the analyst to examine control
flow paths from the entry point of the application to L. Using the CFG for this
task would involve aggregating the CFGs over all methods in the call graph from
the entry point to the method containing L. As shown later using an empiri-
cal study in Section 7, such inter-procedural CFG are typically very large and
prohibitively expensive to analyze. Instead, the analyst can construct a PCG
starting with entry point method and prescribing the loop L as the relevant
event. The resulting PCGs would retain only the relevant paths from the en-
try point that lead to L, and elide all other inter-procedural control flow. The
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Fig. 4: Interactive automation with Projected Control Graph

graph size reduction from CFGs to PCGs for this use case is a good metric of
the PCG’s usefulness for SSCV detection. We show by experiments in Section 7
that the graph size reduction from CFGs to PCGs is significant.

6.2 Inter-procedural Interactive Automation

This subsection describes an inter-procedural interactive automation using theLoop
Call Graph (LCG) [17] as a parameterized model. The LCG is a subgraph of the
call graph that succinctly represents how loops are distributed across methods
in the application. The LCG contains two types of nodes: (a) methods con-
taining loops and (b) methods from which other methods containing loops can
be reached via the call graph. A node is colored blue if it contains loops, and
grey otherwise. There is an edge from method m1 to method m2 in the LCG if
m1 calls m2. The LCG captures two important pieces of information crucial to
analyzing side channels.

Inter-procedural Nesting: First, the LCG captures information about how
loops are inter-procedurally nested by using visual (color) attributes for edges.
An edge is colored yellow if the callsite of m2 is located within a loop in m1 (and
black otherwise). This indicates that loops in m2 are inter-procedurally nested
within a loop in m1. For example, consider a function f containing two loops
L1 and L2, L2 nested within L1. This can be refactored into two methods f, g,
with f containing L1, g containing L2, and f calling g from inside L1. A simple
loop detection algorithm would not detect that L2 is actually nested within L1
although they are not in the same function. The LCG captures this information
via a yellow edge from f to g. Moreover, the loop L2 may be further down in the
call graph – such as in a function h called by g. The analyst can directly use the
LCG to infer this inter-procedural nesting. The analyst can infer the presence
of a recursive call; the LCG shows it as a cycle with a yellow edge.



Reachability: Second, the LCG is useful to understand how a particular loop
can be reached from a selected entry point. An analyst can use this information
to restrict the scope of SSCVs to the subset of the application reached by the
LCG. For example, a web application could have several HTTP Servlets (Java
server side component for handling HTTP requests). To find whether the appli-
cation has a side channel by which an attacker can deduce a valid username, it
may suffice for the analyst to analyze only loops reachable from the Authentica-
tion Servlet. The LCG with the Authentication Servlet’s HTTP handler method
selected shows only methods containing loops reachable from this entry point.

7 Empirical Evaluation with Challenge Apps
We study how the application-agnostic and application-specific automation de-
scribed in Sections 5.2 and 5.3 help address the three fundamental challenges
(Section 4). We present experimental results and evaluation of our tooling with
respect to the first two challenges. We illustrate how our process and tooling
help address the third challenge using a case study in Section 8.
Data Set. This empirical study covers a total of 40 challenge apps provided by
DARPA, which have been specifically engineered to include software side chan-
nel vulnerabilities involving a broad range of entry points, secrets and program-
ming constructs covering the overarching SSCV patterns discussed in Section 3.2.
Overall, the data set includes 7,788 loops and 44,542 branch conditions.

7.1 Application-agnostic Characterization of Program Artifacts:
Usefulness of Catalogs

Table 2 shows the distribution of loops across apps. The rows group the apps
based on the number of loops they contain (buckets increment by 100 loops).
The column L1 is the average fraction of loops (across apps in each row) whose
termination is predicated on a potential secret (the length of a String or size of
a Collection). The column L2 is the average fraction of loops (across apps in
each row) that govern observable events (file I/O or network operations).

Table 2: Distribution of loops rele-
vant to SSCV patterns

# Loops # Apps L1 L2
0-100 10 94.3% 14.5%

100-200 20 97.2% 14.3%
200-300 5 90.6% 8.2%
> 300 5 98.7% 5.3%

That a large fraction of loops is identified
by L1 shows that without using application-
specific knowledge about the secret, there may
be too many loops to scrutinize for the possi-
bility of SSCVs. Therefore, identification of se-
cret is a key first step that the analyst should
perform as part of application-specific reason-
ing in Phase II. In contrast, the fraction of
loops identified by L2 narrows the search for
the possibility of SSCVs effectively even without applying application-specific
knowledge. Note that the current L2 fraction shown in Table 2 only considers
loops governing file I/O and network operations, whereas for certain applica-
tions there may be additional events of interest such as call to a specific library
(which may in turn emit observable events) or recursion (which may be observ-
able through the growth of stack size). Nevertheless, such special events can be



expected to be limited to a small subset of loops, and the loops identified by L2
may be used by the analyst to proceed to Phase II.

Table 3: Distribution of branches
relevant to SSCV patterns

# Branches # Apps B1 B2
0-500 17 3.2% 17.0%

500-1000 5 4.0% 10.6%
1000-2000 12 1.7% 6.9%
> 2000 6 2.7% 5.2%

Table 3 shows the distribution of branch
conditions across apps. The rows group the
apps based on the number of branches they
contain. B1 is the average fraction of branches
predicated on a potential secret (the length of
a String or size of a Collection). B2 is the av-
erage fraction of branches that govern observ-
able events (file I/O or network operations).
Both B1 and B2 identify a small fraction of
branches in the applications as relevant to detection of SSCVs This shows the
usefulness of the branch catalog generated in Phase I - that the possibility of SS-
CVs due to branches can be narrowed down significantly even prior to applying
application-specific knowledge.

7.2 Usefulness of Parameterized Graph Models

Once the analyst has identified a set of loops or branches in the application using
the catalog, in Phase II his objective is to develop a hypothesis about how these
program artifacts may be exploited to reveal the secret. For this, the analyst has
to understand whether the set of paths they induce cause observable differential
behavior. Section 6 described two parameterized graph models: LCG and PCG,
and how they can be composed to help the analyst understand the equivalence
classes of paths from the entry points to a given loop L in the program.

We perform the following experiment using the graph models. For each loop
L, we compute the LCG from the entry points to the method containing the
loop L, and measure the aggregated number of nodes and edges in the CFGs of
all methods in that LCG. We also construct PCGs with entry point and loop L
as event, as described in the PCG use case for detecting SSCVs (Section 6.1).

(a) (b)

(c) (d)

(e) (f)

Fig. 5: Distribution of loops w.r.t. size of the
CFG and PCG from the entry points to loops

Figure 5 shows the comparison
of the number of nodes in the CFG
versus the PCG (a, b respectively)
and the number of edges in the
CFG versus the PCG (c, d respec-
tively). The results are presented
as histograms with three bins de-
signed to represent small, medium
and large instances of the graphs
(CFG or PCG). The bin sizes are set
to 60 for nodes and 200 for edges,
so that the small, medium and large
instances correspond to easy, moder-
ate and hard instances for an analyst
to comprehend the instance (reacha-
bility of the loop from entry point).
For example, a loop whose reacha-



bility from entry point according to this experiment involves 50 nodes and 150
edges is considered relatively easy. The set of inter-procedurally reachable paths
was prohibitively expensive to compute for all the loops. Therefore, the his-
tograms show results for 2542 loops from our data set.

Our results show that, compared to the CFG, the PCG significantly reduces
the graph sizes while retaining the SSCVs relevant behaviors. The number of
nodes and edges in the PCG was only 13.5% and 2.57% of those in the CFG,
which is a drastic reduction. Furthermore, we uniformly observe across the his-
tograms that when using the CFGs, most instances are hard (last bin) and very
few are easy (first bin). Whereas the use of PCG reverses the trend: most in-
stances fall in the easy (first) bin, and very few fall in the hard (third) bin.

8 Case Study: SSCV Detection

This section is a study using a challenge application from the DARPA STAC
program.
Challenge application. The Law Enforcement Employment Database Server
(LEEDS) is a network service application that provides access to records about
law enforcement personnel. Employee information is referenced with a unique
employee ID number. The database contains restricted and unrestricted em-
ployee information. The ID numbers of law enforcement personnel working on
clandestine activities is restricted information. The database supports the fol-
lowing functionality: (1) Search - search law enforcement personnel by a range
of employee ID numbers; (2) Insert - create a new employee ID number. Users
can search, view, add unrestricted employee IDs and associated information. If
a user makes a query for a range of IDs that contains one or more restricted IDs,
the restricted IDs will not be included in the returned data.
Side channel question. Consider the following question the analyst has to
answer: Is there a side channel in time in LEEDS that allows an attacker to
determine whether the range of values he searches contains a restricted ID?

Phase I. Our application-agnostic automation generates catalogs for entry
points, potential secrets, loops and branches in the application. The analyst
observes that there are 8 entry points (7 are main methods and one UDP request
handler) and 130 potential secrets (76 fields and 34 callsite returns). The loop
catalog reports 106 loops, of which 100 terminate based on Strings or collections,
and 17 of the 106 involve events such as network or file I/O. The branch catalog
reports 225 branches, of which 75 govern loops or network or file I/O events. The
analyst observes that the 17 loops involving network or file I/O could be a good
starting point for his Phase II activity of narrowing down program artifacts.

Phase II. In Phase II, the analyst first uses the application’s description to
identify an entry point and the secret.
Entry Point Identification. LEEDS is a network database server, so the analyst
identifies a UDP Request handler as the relevant entry point (other entry points
are main methods inaccessible to the clients) for starting his audit.



Secret Identification. To identify the secret, the analyst again leverages knowl-
edge from the application description – that there could be multiple restricted
IDs in the LEEDS database, so the secret is likely to be a collection rather than
a primitive or a String. Thus, the analyst inspects only the 13 (of the 130) po-
tential secrets that are collections. By manual inspection of the 13 collections,
the analyst identifies the field ids of type ArrayList in the app as the secret
(restricted IDs).

Fig. 6: Subsystems Interactions Filter UI configured with loops and network APIs used
in the LEEDS application

Narrow down Program Artifacts. The analyst decides to explore two strategies
to narrow down program artifacts: (1) Use LCG to find reachable loops from
the UDPServerHandler.channelRead0 entry point; (2) Since the description says that
LEEDS is a network database server, and the question is to find a side channel
in time rather than space, use subsystem interactions to select loops (time con-
suming program artifacts) that govern network operations. The LCG from the
entry point of interest ( UDPServerHandler) selects 99 loops (of the 106 loops in the
application), which does not provide sufficient reduction of program artifacts to
hypothesize SSCVs. Switching to second strategy, the analyst invokes the Sub-
system Interactions Filter and configures it with the 106 loops and 1104 network
APIs as input (Figure 6). This results in 14 loops, a significant reduction.

The analyst observes that 8 of the 14 loops, namely L1, . . . L8 are present in
the entry point method. The analyst further confirms from the loop and branch
catalog (generated in Phase I) that the app has a branch condition (b) governing
a network write operation as well. At this point, the analyst has narrowed down
the program artifacts, and proceeds to scrutinize b, L1 . . . L8.
Hypothesizing SSCV Patterns. Observing that b, L1 . . . L8 occur in the same
method UDPServerHandler.channelRead0, the analyst considers plausible SSCV pat-
terns that may be present in the application. Specifically, the analyst has the
following questions.

1. Does the branch b create differential paths with and without network oper-
ations, indicating the plausibility of SSCV pattern 2?

2. How is branch b related to loop Li, i ∈ {1 . . . 8}; specifically, do b and any of
the Li’s combine to induce differential behavior according to SSCV patterns
1 or 5?



3. Is the branch b predicated on the secret?

Interactive Analysis using PCG. The CFG for UDPServerHandler’s channelRead0

method has 194 nodes and 324 edges, which is difficult to comprehend. To view
only the behaviors with respect to network interactions, the analyst decides
to inspect the method using a PCG with selected network write operations as
events. The analyst uses the following parameters to construct the PCG with
respect to Li : the CFG for the loop Li’s body and the contained network write
events. The analyst observes that the resulting PCG with network operation
events for one of the loops, say L1, contains the branch b, so the analyst further
scrutinizes the relationship between b, L1 and network events.

Before proceeding further, the analyst uses an independent taint analysis to
confirm that (a) b is predicated on the secret (i.e., there exists a taint from the
secret ids to the branch condition b), and (b) the loop L1 iterates for every ID
in the database within the search range provided as input. Now the analyst is
ready to make a hypothesis.

Law_enforcement_database

server

UDPServerHandler

channelRead0

try

while (ind <
range.size())

try

ctx.writeAndFlush(new DatagramPacket(...));

if (!this
.restricted

.isRestricted(nextkey))

⊤

⊥

Fig. 7: PCG showing the differential be-
havior in the LEEDS application

Figure 7 shows the PCG generated
using L1’s loop body and network write
event. The top (>) and bottom (⊥) nodes
in the PCG correspond to the entry and
exit for the control flow used to construct
the PCG. The cyan node is L1’s loop
header, and the yellow node is the se-
lected event (network write operation).
The solid and dotted edges from the
branch condition nodes (diamonds) cor-
respond to the paths taken when the
branch condition evaluates to true and
false respectively. For example, loop L1’s
header is also its termination branch con-
dition, so when it evaluates to false,
L1 terminates (indicated by dotted edge
from loop header to ⊥).

The PCG clearly identifies b (red diamond) as a branch condition governing
differential behavior with respect to two paths: the true path contains a network
write operation (call to writeAndFlush), while the false path does not. Inspecting
the code (Listing 1.1), the analyst finds that the other path b (line 6) governs,
has another loop L′ (lines 13-15). Since b is already within loop L1, the analyst
hypothesizes that b, L1 and L′ combine to induce differential behavior that has
traits of three SSCV patterns 1, 2 and 5 (Section 3.2). Specifically, the hypothesis
is that L1 iterates for every ID in the input range, and if it is not a restricted
ID (secret), b induces a network event, otherwise b induces a resource consuming
operation (loop).

Phase III. Finally, in Phase III the analyst performs dynamic analysis to
confirm his hypothesis. The analyst records the timings when searching for a



range of IDs including the restricted ID. The analyst confirms that when the
range includes a restricted ID, network packets are received for every ID in the
database within the range except the restricted ID. The attacker can deduce that
a restricted ID is contained in the input range whenever he observes a longer
interval between 2 consecutive network packets received from the server. This
confirms the analyst’s hypothesis.

Listing 1.1: UDPServer.channelRead0: code snippet
1 int ind = 0;
2 // Loop L1
3 while (ind < range.size()) {
4 Integer nextkey = range.get(ind); ...
5 // Differential branch condition b
6 if (!this.restricted.isRestricted(nextkey)) { ...
7 // Network write event on the true path from b
8 ctx.writeAndFlush((Object)new DatagramPacket(bos,

(InetSocketAddress)packet.sender())); ...
9 continue;

10 } ...
11 Integer getkey = range.get(ind);
12 // Time consuming loop L’ on false path from b
13 while (this.restricted.isRestricted(getkey) && ind < range.size()) { ...
14 getkey = range.get(ind);
15 }
16 }

9 Related Work
Kocher [18] was the first to demonstrate a side channel attack using timing
information to expose secret keys used in RSA, Diffie-hellman, Digital Signature
Standard, and other cryptosystems. Subsequently, several side channel exploits
against cryptographic algorithms on security hardware and cache architectures
have been demonstrated [22,21,14,23,15,5,30,16].

In their seminal paper, Brumley and Boneh [8] showed that such side channel
attacks also apply to general software systems, and demonstrated a timing side
channel attack that could extract private keys from an OpenSSL-based remote
web server. Since then, several other side channel attacks have been demon-
strated on remote servers and software [26,6,24,20,7,28,25]. Software side chan-
nel vulnerabilities (SSCVs) are particularly difficult to detect [3,9]. We discuss
related work on the complexity of detecting SSCVs.

Demme et al. introduced Side-Channel Vulnerability Factor (SVF) [12] as a
measure of the correlation between execution traces of a microprocessor and an
attacker’s observation traces. Zhang et al. proposed Cache Side-channel Vulner-
ability (CSV) [32] as an improvement over SVF specifically to measure cache
based side channel vulnerabilities. Köpf et al. [19] model the amount of infor-
mation about the secret leaked by an application using information-theoretic
entropy measures. Doychev et al. [13] perform static analysis to provide a quan-
titative upper bound on the amount of information contained in various side
channel observables such as timing and events corresponding to cache accesses.

The research as noted above pertains to metrics that are specific to certain
types of secrets (private keys of cryptosystems), and involve a limited range of



observables (e.g., cache access timing, cache hit or miss events, time spent on
certain operations on the CPU). In contrast, as we have described, SSCVs admit
much wider variability in terms of the secret and observables. As an example, in
our case study (Section 8), the secret was a globally declared collection in the
application and the observable was timing of network packets received from the
victim.

Sidebuster [31] analyzes Java web applications to detect and quantify poten-
tial side channels. Sidebuster requires the developers or analysts to label pro-
gram artifacts as sensitive, and uses taint analysis to identify branch conditions
tainted by them. The taint analysis based detection performed by Sidebuster is
subsumed by the analyses supported by our tooling (see Sections 5.2 and 5.3).

As far as we know, the open-ended SSCVs and a systematic human-on-the-
loop automation for detecting them is being described for the first time with
this paper.

10 Conclusion

Software side channel vulnerabilities (SSCVs) pose a serious threat to cybersecu-
rity. They have challenged modern cryptographic algorithms and have enabled
attackers to compromise remote servers and web applications. The possibili-
ties for SSCVs are open-ended, beyond the well-studied cryptographic SSCVs.
With that in mind, the US defense research agency DARPA created the STAC
program [3] to create an innovative technology to address the threat of SSCV
attacks. We as STAC participants involved in developing a such technology are
challenged with a mixture of benign and vulnerable software to evaluate how well
the human-on-the-loop automation works in practice on large software. This pa-
per presents the research for developing such automation.

Our approach tries to bound the open-ended SSCVs by classifying them
with overarching patterns. At the current stage of research we have five overar-
ching patterns. We have created a public repository [4] of representative SSCVs
based on these patterns. This repository is meant to serve as valuable exam-
ples for other researchers interested in pursuing research on SSCVs. We present
application-agnostic automation, one that works across all the overarching pat-
terns, to derive and catalog relevant program artifacts and their attributes. The
results of application-agnostic automation feed into the subsequent application-
specific interactive automation to hypothesize potential SSCVs and gather evi-
dence to prove their existence with targeted dynamic analysis. We present novel
interactive automation using parameterized program graph models.

We present a case study to demonstrate how the proposed human-on-the-
loop automation can be used in practice. We bring out its significance by an
experimental evaluation using metrics to measure the complexity of detecting
SSCVs. An interesting and important area for future research is to scan the open-
source software to look for potential SSCVs based on the overarching patterns.
It involves difficult challenges of minimizing the human effort while maintaining
the accuracy of detecting SSCVs.
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