
Interactive Visualization Toolbox to Detect Sophisticated Android Malware*

Ganesh Ram Santhanam Benjamin Holland Suresh Kothari
Department of Electrical and Computer Engineering, Iowa State University

Ames, IA 50011 {gsanthan,bholland,kothari}@iastate.edu

Jon Mathews
EnSoft Corp. Ames, IA 50010

jmathews@ensoftcorp.com

ABSTRACT

Detecting zero-day sophisticated malware is like searching for a
needle in the haystack, not knowing what the needle looks like.
This paper describes Android Malicious Flow Visualization Toolbox
that empowers a human analyst to detect such malware. Detecting
sophisticated malware requires systematic exploration of the code to
identify potentially malignant code, conceiving plausible malware
hypotheses, and gathering evidence from the code to prove or refute
each hypothesis. We describe interactive visualizations of program
artifacts to understand and analyze complex Android semantics used
by an app. The toolbox incorporates visualization capabilities that
work together cohesively, and provides a mechanism to easily add
new capabilities.

We present case studies of detecting Android malware with con-
fidentiality and integrity breaches. We report the accuracy and
efficiency achieved by our team of analysts by using the toolbox,
while auditing 77 sophisticated Android apps provided by Defense
Advanced Research Projects Agency (DARPA).
Toolbox URL: https://kcsl.github.io/AMFVT/

1 INTRODUCTION

Sophisticated zero-day malware do not conform to the signature
of known malware. Sophisticated malware are often designed to
enact catastrophic consequences, and are targeted at a nation-state
or community, e.g., Flame [26], Stuxnet [8], and Android malware
versions of the Kakao Talk messaging app [6, 7].

To the best of our knowledge, automated detection approaches
using program analyses [30] and machine learning [11] cannot work
for sophisticated zero-day Android malware, with no signature or
samples. A purely manual approach is extremely laborious due to
the complex semantics of Android APIs and their varying combi-
nations. The need for a collaborative approach bringing together
human intelligence and machine automation is the key for detecting
sophisticated malware [5]. As Frederick Brooks articulates, complex
problems require automation to amplify human intelligence [14].

This paper presents a novel human-on-the-loop approach [10]
to detect sophisticated Android malware. The approach consists
of three steps: (a) automatic pre-computation of data and control
flows within an app and between the app and Android, (b) generate
hypotheses as to how the app could manifest malicious behavior,
using interactive visualizations to understand the relationships be-
tween app’s program artifacts and Android, and (c) gather graphical
evidence of the app’s semantics that validates or refutes hypotheses.
The steps (b) and (c) may be iteratively performed by an analyst
until either a hypothesis is validated or all of them have been refuted.

*This material is based on research sponsored by DARPA under agree-
ment numbers FA8750-15-2-0080 and FA8750-12-2-0126. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

A human analyst is faced with two specific challenges when
detecting sophisticated Android malware. First is the open-ended
search for plausible hypotheses of malicious behavior. The space
of hypotheses can be arbitrarily large for a given app. With no
prior knowledge of an app’s malicious behavior, the analyst has to
rely on a general model such as the CIA (confidentiality, integrity,
availability) model [22] to systematically explore hypotheses related
to malicious behaviors. In particular, an analyst may consider hy-
potheses related to confidentiality leaks (e.g. GPS location is leaked
to an adversary), integrity breaches (e.g. incorrect GPS location
is displayed in some geographic locations), or denial of service
(e.g. malware runs loops to drain the device battery) attacks enabled
by unscrupulous use of Android APIs. However, this can still be
prohibitively expensive, as there may be numerous potential CIA
hypotheses to explore for a given app. To precisely explore only the
relevant CIA hypotheses, it is critically important for the analyst
to visualize and understand the data and control flow interactions
between the app and the Android components it uses. For example,
knowing that an app interacts with the hardware and messaging APIs
via data flow leads to the hypothesis that it may leak camera images
by sending them as attachments with messages.

Once a hypothesis is generated, the second challenge for the
analyst is to be able to gather evidence that validates or refutes
the hypothesis. This is challenging because sophisticated malware
typically contain several scattered and cleverly hidden components.
The Android API stack consists of several layers, and its semantics is
very complex. This is further complicated by several asynchronous
call back mechanisms in the form of Intents, message handlers
and broadcast receivers [18], and Java’s exceptional flows. Piecing
together the evidence required to identify the modus operandi of
sophisticated malware requires analyst to be able to on-demand
visualize a composition of data, control, and Android-specific flows
of an app. Therefore, tools that enable analyst to visualize and
compose artifacts that can serve as evidence of the hypothesized
malicious behavior are crucial to ensure the efficiency of detection.

To address the above challenges, this paper presents the Android
Malicious Flow Visualization Toolbox [3], a suite of interactive vi-
sualization capabilities that work together cohesively to enable the
human-on-the-loop approach. The toolbox consists of interactive
visualizations called smart views built on top of Atlas [17], which
enable an analyst to generate and validate hypotheses about mali-
cious behavior in an Android app. Specifically, smart views enable
analysts to: (a) visualize interactions of the app with various sub-
systems of Android via data and control flow, (b) visualize how
exceptions thrown and caught by the app may amount to malicious
behavior by the agency of Java’s exception flow semantics, and (c)
visualize how sensitive data may be modified by the app leading to
an integrity breach. Smart views generate human consumable evi-
dence in the form of program graphs whose nodes and edges are the
app’s artifacts and their syntactic and semantic relationships. Smart
views are interactive – an analyst can click on a specific artifact
in the code, and the smart view is automatically recomputed and
displayed corresponding to the new selection. The smart views are
also composable, thus allowing an analyst to piece together a variety
of evidence to validate hypotheses.

We illustrate using case studies how a human analyst uses the
Android Malicious Flow Visualization Toolbox to detect sophisti-

https://kcsl.github.io/AMFVT/

cated malware that violate confidentiality and integrity. While an
extensive study of the impact of our approach and tooling on human
analysts is beyond the scope of this paper, we report on the aver-
age accuracy and speed of malware detection on 77 apps provided
by DARPA [4] based on the performance of 3 analysts who are
knowledgeable about the Android system.

To summarize, our contributions include:
• Human-on-the-loop approach to detect sophisticated Android mal-

ware
• Android Malicious Flow Visualization Toolbox containing inter-

active and composable smart views to enable human analysts
to hypothesize and gather evidence of malicious behavior in an
Android app

• Case studies illustrating the use of our approach and the tool-
box by human analysts to detect sophisticated malware involving
confidentiality and integrity breaches

2 HUMAN-ON-THE-LOOP MALWARE DETECTION AP-
PROACH

This section describes a “human-on-the-loop” approach [24] to de-
tect sophisticated Android malware. The analyst’s role in this ap-
proach is to use knowledge about the Android system to review
an app’s interactions with Android libraries, hypothesize plausible
malicious behaviors, and gather evidence to validate or refute them.

2.1 Three-Phase Malware Detection
According to the widely accepted CIA model (industry standard for
information security [30]), an app can be considered to be malware
if it violates any of the three key principles: confidentiality, integrity
and availability. To decide whether an app violates CIA principles,
the analyst has to answer specific questions related to each of them.
For instance, to determine whether an app has a confidentiality leak,
the questions would be: (a) What could be the sensitive information?
(b) How could the sensitive information be leaked (e.g., by writing
to a SD card or sending it through internet)? (c) What triggers the
leak? Similarly, the questions to detect integrity violations would
be: What information should be considered critical and immutable
to ensure integrity? How could the information get corrupted? What
triggers the corruption? Similar questions can be asked to detect
availability violations: What resources could be exhausted mali-
ciously (e.g., battery drained by running an unnecessary loop)? How
could the resource exhaustion take place? What triggers the resource
exhaustion?

To help the analyst answer such questions, we describe a three-
phase detection approach.

Phase I: Automated exploration. The objective of the first phase is
to precompute information that serves as the basis for the analyst to
begin the investigation. The precomputed information includes the
data, control and exceptional flows within the app, the permissions
granted to the app and the APIs used to exercise them, and program
artifacts that use the Android resource files. The precomputed infor-
mation also includes the call and data flow interactions of the app
with various Android subsystems. Subsystems are logical groupings
of Android APIs according to the functionality they provide such
as networking, storage device access, address book, etc. (see Sec-
tion 3.1 for details). The interactions provide high level information
about how the app interacts with Android components.

At the end of Phase I, this precomputed information is stored in
the form of program graphs of syntactic and semantic (data, control
or call) relationships between app’s artifacts and Android. Parts of
this precomputed program graph can be queried and visualized by
the analyst using smart views (details in Section 3) in Phase II.

Phase II: Hypothesis formulation. The objective of the analyst
here is to develop hypotheses about how the app could violate con-
fidentiality, integrity or availability properties. As examples, the

hypotheses for confidentiality leak could be: “the app leaks GPS
location information through internet” or “the app leaks preview
images from camera to the internet.”

To aid the formulation of relevant hypotheses, the analyst should
know which Android subsystem the app interacts with, and whether
the interaction is via data flow, control flow, or call graphs. The
analyst uses the Subsystem Interaction smart view to query and
visualize this information for each subsystem. The analyst may flag
the app’s use of certain Android subsystems as unwarranted based
on knowledge of the app’s intended functionality. For example,
an analyst may consider the interaction of a calculator app with
the Network subsystem or the Media subsystem to be suspicious.
The analyst can then hypothesize that “The calculator app writes
sensitive information to the network” or “The calculator app deletes
sensitive information from the SD card”.

By the end of Phase II, the analyst has malware hypotheses that
need to be either validated or refuted.
Phase III: Gathering evidence to validate hypotheses. The ob-
jective of the analyst here is: (1) to gather evidence that validates
the hypotheses formulated in Phase II, and (2) to compose together
pieces of evidence to identify the overall modus operandi of the
malware, i.e., how CIA properties are violated.

To help the analyst gather evidence to validate the hypotheses,
we provide two smart views: an Exceptional Flow smart view, and
an Integrity Checker smart view. This Exceptional Flow smart view
matches throw or catch blocks corresponding to a selected catch
or a throw site in the app. This is crucial for an analyst because
exceptional flows are control transfers implicitly performed by the
JVM’s exception handling mechanism, and are not visible in the
control flow graph. This smart view enables the analyst to gather
evidence needed to validate hypotheses that malicious flows use the
exception flow mechanism. The Integrity Checker smart view allows
the analyst to select a data flow artifact such as a variable in the app,
and displays the set of program locations in the app that modify
it along with the conditions governing each modification. This is
useful to gather evidence needed to validate hypotheses related to
integrity violations. For example, if the analyst hypothesizes that
certain variables or types should not be modified according to the
functionality of the app, this smart view shows whether and under
what conditions the app modifies them.

In the final step of Phase III, the analyst manually composes the
individually gathered evidence into an overall sequence of events that
prove that the app violates confidentiality, integrity or availability.
At the end of Phase III, if the analyst is unable to compose such a
flow using the gathered evidence, the analyst rejects the hypothesis.
Iteration of phases. Given the complexity of Android semantics
and that of the analyzed app, the analyst may come up with several
malware hypotheses. Phases II and III may be iteratively performed
for each hypothesis until one is validated; otherwise if all hypotheses
are refuted the app is declared benign.

2.2 Illustration of Three-Phase Malware Detection
Consider an app that scans barcodes and looks up product infor-
mation from the internet. Phase I computes the interactions of the
app with various Android subsystems. In Phase II, the analyst may
observe that the app invokes APIs from the Android messaging
subsystem and Android network subsystem. After inspecting the
relevant code causing the interactions, the analyst may identify that
the app accesses the URL http://www.malwareforsure.com, which is
suspicious. The analyst hypothesizes that the app may leak out sen-
sitive information through the URL and thus violate confidentiality.
In Phase III, the analyst gathers the following pieces of evidence:
(i) the app consumes messages posted to the Android messaging
subsystem in method m1, (ii) m1 throws an exception containing the
message contents while consuming messages from Android, which
is caught in another method m2, and (iii) m2 sends data from the

http://www.malwareforsure.com

exception object to the internet, and (iv) the app posts a message to
the Android messaging subsystem containing the camera preview
images. At the end of Phase III, the analyst composes the gathered
evidence to show that the sequence of events (iv) → (i) → (ii) →
(iii) is indeed malicious.

3 ANDROID MALICIOUS FLOW VISUALIZATION TOOLBOX

We present the Android Malicious Flow Visualization Toolbox for
detecting sophisticated Android malware. We have developed this
toolbox in addition to the previously reported research on the An-
droid Security Toolbox [23]. The Android Malicious Flow Visualiza-
tion Toolbox is an Eclipse plug-in built using the Atlas platform [17].
The toolbox can be used to analyze Android, Java source code and
Java byte code applications.
Smart views. The Android Malicious Flow Visualization Toolbox
includes three interactive visual models called smart views: (1) a
Android subsystem interaction smart view showing the interaction
between the app and different parts of the Android system, (2) an
exception flow smart view showing the correspondence between
matching throw and catch locations, and (3) an integrity checker
smart view showing the conditions under which a predefined set of
Android-specific or app-specific immutables are modified by the
app.

Smart views are visual graph models, whose nodes and edges
correspond to syntactic and semantic relationships of of a subset of
app’s artifacts and Android. Smart views accept a selected source
code element or graph element from another visual model as input,
and produce a visual model as output. Smart view are interactive, i.e.,
are automatically updated when the analyst changes the selection.
They are composable – an analyst can select a graph element from
the output of a smart view and feed it as the input to another smart
view. Smart views provide two-way source correspondence, so the
user can click on a node or an edge in the visual model to go to
the corresponding source code artifact (control flow block, variable,
etc.). The smart views in the Android Malicious Flow Visualization
Toolbox seamlessly compose and integrate with built-in Atlas smart
views that allow analyst to explore classical forward/reverse data
flow for a selected data flow node (e.g., parameters, variables),
control flow for a selected control flow block, and call graph for
a selected method. To scale visualizations to large visual graph
models, smart views provide interactive controls for incrementally
unfolding, zooming and panning the graph models.

3.1 Android Subsystem Interaction View
Partitioning the app’s interaction with Android. The Android
operating system is large, consisting of the Linux kernel plus about
2 million lines of Java code spread across more than 200 packages
and close to 5000 classes [2]. The analyst can get lost with hundreds
of Android APIs an app may interact with. This visual model
provides a solution by a logical partitioning of the Android API (at
the package level) consisting of 19 subsystems. Each subsystem is
mapped to a set of packages of libraries commonly used by Android
apps. Table 1 shows our partitioning scheme. The result for each
subsystem consists of two bipartite graphs: (1) a call interaction
view showing all calls between the app and the Android subsystem,
and (2) a data flow interaction view showing all data flows between
the app and the Android subsystem. For the call interaction view,
the nodes of the bipartite graph consist of methods in the app and
the methods in the Android subsystem, and the edges represent calls
between them. For the data flow interaction view, nodes consist of
variables, parameters, return values, etc., in the app and the Android
subsystem, and the edges represent data flows between them.
Subsystems vs. Permissions. Android’s permission framework
maps APIs to permissions. However, there are two reasons why
permissions are inadequate and subsystems are needed to divide the
Android APIs into logical groups with related functionality.

Subsystem Description A J+

o
T

Accounts Device accounts 1 0 1
Administration Device administration 1 0 1
App Resources App manifest, R file, etc. 2 0 2
Core Android core OS 10 0 10
Crypto Cryptography libraries 0 13 13
Database Database libraries 2 2 4
Hardware Hardware libraries 4 0 4
Introspection Reflection & runtime libraries 2 1 3
IO I/O & serialization libraries 3 23 26
Java Other Java language libraries 0 4 4
Location Location based 2 0 2
Media Media libraries 5 0 5
Network Network IO libraries 14 32 46
Preference Device preferences 1 0 1
Provider Provider interfaces 1 0 1
Support Android support libraries 24 0 24
Test Mock interface & test libraries 3 2 5
UI User interface libraries 19 3 22
Util Android & Java utilities 2 10 12

Table 1: Logical subsystem partitioning: The number of packages
within Android (A) and Java or other commonly used libraries (J + o) that are
mapped to the subsystem category are given in columns 3 and 4 respectively;
column 5 shows the total.

1. Permissions do not cover all the Android APIs [12] i.e., some
Android APIs do not require a permission.

2. There are close to 200 permissions defined by Android (the
number continues to grow with new versions of Android), and
additionally an app can define further permissions. The large
number of permissions provides low-level details, but also makes
it difficult for an analyst to hypothesize malicious behavior in
terms of higher level abstractions such as violation of the CIA
principles.

In contrast to permissions, our subsystems listed in Table 1 cover all
the Android APIs, i.e., every Android API can be mapped to one of
the 19 subsystems. The subsystem views provide a higher level of
abstraction than mapping to permissions.

Analyst interaction. From the call interaction view, the analyst can
click on the methods in the app or Android to jump to the corre-
sponding source code. The analyst can click on the edges to jump
to the call site in the source code. From the data flow interaction
view, the analyst can similarly click on variables, method parame-
ters, return values etc. to jump to the corresponding source code
location. The visual models do not display Android components that
don’t interact with the app. This keeps the analyst focused on the
part of the Android subsystem that is relevant to the app’s behavior.
Figure 1 shows the call interaction of an app with Android’s network
subsystem. How this is useful in detecting malware is explained
using a case study in Section 4.1.

3.2 Exception Flow View
Importance of reasoning about exceptional flows. Exceptional
flow information is critical from the perspective of detecting ma-
licious flows for two reasons. First, data carried in the exception
object could be sensitive. Second, the exception flow may exercise
malicious paths not visible through the control flow graph.

Analyst interaction. The exceptional flow smart view is a visual
model that allows the analyst to view matching throw and catch
blocks according to Java’s exception flow semantics. Nodes corre-
spond to throw and catch events in the code. Edges represent the
transfer of control from the throw to the corresponding catch blocks
according to Java’s exceptional handling semantics. This visual
model instantly updates in response to analyst’s selections in the

source code. If the analyst selects a catch block, the visual model
shows potential throw blocks connected to the selected catch block.
For convenience, it also allows the analyst to select an entire method
to select all the throw and catch blocks in it and their respective
connecting blocks. Figure 2 shows an example of this visual model
when a method is selected. How it helps an analyst in malware
detection will be described in a case study in Section 4.1.

3.3 Integrity Checker View
Detecting integrity breaches. An integrity breach occurs when an
app modifies critical data (a.k.a. immutable) that should not be ordi-
narily modified unless an app’s functionality warrants it. Integrity
may be breached in two ways: (1) malware may directly modify
an immutable (e.g., overwrite contact details), or (2) malware may
modify the algorithm that computes the immutable (e.g., algorithm
that computes checksum for a file).

We have categorized immutables in Android into data arti-
facts(e.g., variables) related to system location, device preferences,
system settings, secure system settings, device sync state, user dictio-
nary, and all Android widgets (android.view.View and its subclasses).
In addition, variables computed by the app (e.g., checksums, hash
functions) can also affect the app’s performance, reliability and
trustworthiness, and should be considered immutable.
Analyst interaction. We have developed an integrity checker smart
view that shows all program locations that modify a selected Android-
specific immutable or app-specific immutable, along with the branch
conditions under which they are modified. On selection of an im-
mutable, the view internally invokes analyses that uses the data flow
graph to reach the assignments to the immutable, and then identifies
the branch conditions under which those assignments occur using the
control flow graph. The view then updates with the paths involving
these branches and assignments. These branch conditions are impor-
tant because the path in which the variable is modified can be crucial
information for the analyst to decide whether the modification is
legitimate given the app’s functionality. The analyst can invoke the
visual model with respect to a specific category of Android-specific
immutable, such as location, system settings, etc. or with respect
to an app-specific immutable. Figure 6 and Figure 7 show the vi-
sual model produced on the selection of an Android-specific and
app-specific immutable respectively. Section 4.2 illustrates case
studies in which these serve as critical pieces of evidence to validate
malware hypotheses.

4 CASE STUDIES FOR EVALUATION

The Android Malicious Flow Visualization Toolbox cannot be evalu-
ated independent of the analyst’s capability to detect sophisticated
malware. Therefore, we illustrate how the Android Malicious Flow
Visualization Toolbox helped human analysts during malware detec-
tion using case studies of confidentiality leak and integrity breaches.

The case studies presented here are drawn from a repository of
77 Android apps provided by DARPA, which were designed to be
representative of real world apps. Of the 77 apps, 62 contained novel
and sophisticated malware designed to evade automatic, signature-
based detection techniques. Their average size was 7000 lines of
code, with a maximum of 70,000 lines of code.

An extensive human-subject experimental study of the impact
of our approach and toolbox on analysts is beyond the scope of
this paper. Nevertheless, to illustrate the practical feasibility of
our human-on-the-loop approach and the utility of the toolbox, we
include here the average accuracy and speed of malware detection
(classifying an app as malware or benign) achieved by 3 different
analysts, and the scalability of our toolbox for the 77 apps before
proceeding to the case studies. The analysts for this study included
a graduate student, a research scientist, and an experienced software
engineer from the industry. The target groups of our system are
security analysts with knowledge about the Android system.

Figure 1: Network subsystem interaction visual model with calls:
Top layer shows app methods that call Android APIs. Bottom layer
shows Android and Java networking APIs.

1. Time: Each analyst required 1.13 hours per app on average
using our approach and the toolbox. The maximum analyst time
for an app was about 12 hours.

2. Accuracy: The analysts using the toolbox as part of the human-
on-the-loop approach correctly classified 66 (85.7%) apps as
malicious or benign, found unintended malicious behaviors in 6
(7.8%) apps, and missed malicious behaviors in 5 (6.5%) of the
apps.

3. Scalability: Our toolbox was able to dynamically recompute
information for the smart views within few seconds even for the
largest app with 70,000 lines of code.

4.1 Confidentiality Leak
We illustrate how a confidentiality leak in the BarcodeScanner app
is detected using Android Malicious Flow Visualization Toolbox .

App functionality: The BarcodeScanner app (1) Scans barcodes
images on products using the camera, (2) Looks up the product infor-
mation for the scanned barcode from the internet, and (3) Displays
the looked up information to the user. The app consists of 68 Java
files with 6307 lines of code.

4.1.1 Phase I, Automated Exploration
The Android permissions and interactions between the BarcodeS-
canner app and the Android subsystems are precomputed by the
Android Malicious Flow Visualization Toolbox (see Section 3.1).

4.1.2 Phase II, Hypothesis Generation
The analyst surveys the interactions between the app and the An-
droid subsystems using the Subsystem Interaction smart view to
get a high level understanding of the app’s activities. The ana-
lyst observes the interactions of the app with the Camera subsys-
tem and Network subsystem. The analyst then wants to check
if the access to internet is used for the legitimate purpose only.
By looking at the Subsystem Interaction smart view with respect
to the network subsystem (see Figure 1), the analyst finds a
call from the method DecodeHandler.handleMessage in the app to
URLEncoder.encode(String) within the java.net package. The API
converts strings to a URL format to send it to an internet server. The
analyst wants to know:

Q1. What information does DecodeHandler.handleMessage encode in
the URL using URLEncoder.encode?

To probe deeper, the analyst clicks on the handleMessage method
in the smart view. This brings up the source code for the method
(Listing 1). The analyst observes

a. The call site to URLEncoder.encode occurs within a catch block for
DecodeFormatException.

b. The URL uses data from the exception object.
These observations lead the analyst to the following hypothesis.

Hypothesis 1 BarcodeScanner app leaks sensitive data into the
internet in DecodeHandler.handleMessage via an exception flow in-
volving DecodeFormatException.

Listing 1: DecodeHandler.handleMessage

@Override
public void handleMessage(Message message) {
...
switch (message.what) {
case decode:
try {

validateAndDecode((byte[]) message.obj,
message.arg1, message.arg2);

} catch (DecodeFormatException e) {
try {
HttpHelper.downloadViaHttp(
"http://www.goog1e.com/search?q="
+ URLEncoder.encode(

e.getLocalizedMessage(), "utf-8"),
...);

} catch (java.lang.Exception e1) {
...

}
}
break;

case quit: ...
}

}

The app could load sensitive payload into exception ob-
jects DecodeFormatException, throw the exception object at
one program location in the app, catch the exception in
DecodeHandler.handleMessage, then leak the payload to the internet.

Messages are posted and consumed asynchronously using the
Message.sendToTarget and MessageHandler.handleMessage APIs re-
spectively. The control and the data flow through the messages is
not visible in the app. The analyst becomes suspicious because
of the invisibility of flows to carry the payload from its point of
production to the launch site to send it to an Internet server. The
indirections through an exception and a message handler make the
program difficult to understand; if they have a legitimate purpose, it
is not clear to the analyst. So, the analyst probes further.

Hypothesis 2 A program location within BarcodeScanner en-
capsulates sensitive information in a message and posts
it using Message.sendToTarget. The information is subse-
quently asynchronously consumed by the message handler
DecodeHandler.handleMessage.

The above two hypotheses, if validated, could be composed by the
analyst to prove that the app has a confidentiality leak. Hence, the
analyst moves to Phase III to validate the hypotheses.

4.1.3 Phase III, Validating the Hypotheses

Gathering Evidence to Validate Hypothesis 1. To validate Hypoth-
esis 1, the analyst needs to answer the following questions:

Q2. Which program locations throw an exception of type
DecodeFormatException?

Q3. Does the exception object contain sensitive information?
The analyst conducts an investigation to get the answer to

Q2. To comprehend the exception flows propagated through
DecodeHandler.handleMessage, the analyst invokes the Exception
flow smart view as described in Section 3.2. The resulting vi-
sual model shown in Figure 2 reveals that DecodeFormatException
is thrown in exactly one location, namely the method
DecodeHandler.decode. The analyst clicks on the throw location
to go to the source code of the method DecodeHandler.decode shown
in Listing 2. The analyst finds that the DecodeFormatException object
thrown here is constructed using the contents of the variable data.

Next, the analyst addresses the question Q3. The analyst se-
lects the data and opens the reverse data flow smart view1 (see Fig-

1Smart views for visualizing forward and reverse data and control flow
graphs with respect to a selected data or control flow node are part of the
Atlas platform [17].

com.google.zxing.client.android

DecodeHandler

decode

throw new DecodeFormatException(data,
width, height, "Could not decode data.") →

handleMessage

try

catch (DecodeFormatException)

try

catch (Exception)

java.lang.Exception e1

DecodeFormatException e

HttpHelper

waste

try

catch (UnsupportedEncodingException)

try

catch (UnsupportedEncodingException)

throw new IllegalStateException(uee2) →

contentMethodHttp

try

throw new IOException("Bad HTTP response: "
 + connection.getResponseCode())

RESPONDS

RESPONDS

RESPONDS

Figure 2: Exception visual model generated by clicking
DecodeHandler.handleMessage. The model shows the correspon-
dence between throw and catch blocks using connecting edges la-
beled "RESPONDS."

ure 3). This smart view shows that the data flowing into the thrown
DecodeFormatException object actually comes from the parameter
passed to the DecodeHandler.decode method, which is called from
the method DecodeHandler.validateAndDecode (Listing 3), which in
turn receives the contents of an android.os.Message cast as byte[].
Thus, the analyst validates Hypothesis 1 by gathering evidence to
show that the exception object encapsulates a payload that came
through a message.

Listing 2: DecodeHandler.decode

private void decode(byte[] data, int width, int height)
throws DecodeFormatException {

...
Handler handler = activity.productionHandler();
if (...) {
// scanner produces valid barcode image
Message message = Message.obtain(handler ,...);
Bundle bundle = ... // get barcode image data
message.setData(bundle);
message.sendToTarget(); // send barcode

} else {
// scanned image is not valid barcode
if (handler != null) {
// send: captured image isn’t valid barcode
Message msg = Message.obtain(handler, ...);
msg.sendToTarget();
throw new DecodeFormatException(data, width,

height, "Could not decode data.");
}

}
}

Listing 3: Decode.validateAndDecode

private void validateAndDecode(byte[] data, int width, int
height)
throws DecodeFormatException {
if(...) {// data is formatted and decodable
decode(data, width, height);

}
}

Gathering Evidence to Validate Hypothesis 2. To validate Hypoth-
esis 2, the analyst needs to know the callers of Message.sendToTarget.

com.google.zxing.client.android.book

NetworkAgent

run

try

try

message.obj = json;

message.obj=

JSONObject json = new JSONObject(content);

json

new JSONObject(content)

com.google.zxing.client.android

DecodeHandler

decode

throw new DecodeFormatException(data,
 width, height, "Could not decode data.") →

Data

data[]

validateAndDecode

decode(data, width, height);

data

data[]

handleMessage

try

validateAndDecode((byte[]) message.obj,
 message.arg1, message.arg2);

data

cast

android.jar

android.os

Message

obj

df(inter)

df(inter)

df(inter)

df(local)

df(local)

df(inter)

df(local)

df(local)

df(local)

Figure 3: Reverse data flow graph smart view

The analyst opens the reverse call graph smart view (provided
by Atlas [17]). From the reverse call graph, shown in Fig-
ure 4, the analyst observes a call to Message.sendToTarget from
PreviewCallback.onPreviewFrame (Listing 4), which is an Android
API Camera.PreviewCallback.onPreviewFrame overridden by the app.
The PreviewCallback interface is used to deliver copies of preview
frames as they are displayed [1]. In the smart view, the analyst clicks
on PreviewCallback.onPreviewFrame to bring up its source code.

Listing 4: PreviewCallback.onPreviewFrame

@Override
public void onPreviewFrame(byte[] data, Camera camera) {
Point resolution = ... // obtain camera resolution
Handler previewHandler = .. // obtain preview handler
if (resolution != null && previewHandler != null) {
// send a message with preview image from camera
Message message = previewHandler.obtainMessage(

previewAdvice , resolution.x, resolution.y, data);
message.sendToTarget();
previewHandler = null;

} else {
// log message: No handler available for preview callback

}
}

Inspecting PreviewCallback.onPreviewFrame shows that each
preview image from the camera is indeed encapsulated in a
Message object and posted to the Android messaging system via
Message.sendToTarget. Evidence from Figure 3, Figure 4, and the
corresponding code segments together validate Hypothesis 2.

Composing evidence to detect sophisticated malware. As the final
step in Phase III, the analyst composes the evidence gathered for
Hypothesis 1 and Hypothesis 2 to document the full operation
of the malware. BarcodeScanner leaks confidential information
from the camera as shown in Figure 5. Its full operation is as fol-
lows. The app overrides Camera.PreviewCallback.onPreviewFrame
to asynchronously post a message containing camera pre-
view images. This message is asynchronously consumed by
DecodeHandler.handleMessage, which eventually (via method
DecodeHandler.validateAndDecode) calls DecodeHandler.decode,
which in turn throws the DecodeFormatException object contain-
ing sensitive camera data. This exception is caught again in
DecodeHandler.handleMessage, packaged using URLEncoder.encode
and leaked to the internet. This concludes the analyst’s audit.

com.google.zxing.client.android

TakingActivityHandler

relinquishmentSynchronously

DecodeHandler

decode

validateAndDecode

handleMessage

TakingActivity

onPause

com.google.zxing.client.android.book

NetworkAgent

run

com.google.zxing.client.android.camera

PreviewCallback

onPreviewFrame

android.jar

android.os

Message

sendToTarget

call

call

call

call

call

call

call

Figure 4: Reverse call graph smart view

Figure 5: Confidentiality leak from camera preview image to the in-
ternet is hidden by BarcodeScanner via asynchronous flows through
Android messaging passing and exception flows.

4.2 Integrity Breach
We illustrate the use of Android Malicious Flow Visualization Tool-
box for integrity breaches in two apps: the TRAQ app to show a
compromise of an Android-specific immutable and the CalcC app
to show a compromise of an app-specific immutable. The toolbox
incorporates Android-specific immutables irrespective of any app.
The analyst determines the app-specific immutables for a particular
app taking into account its functionality. We show how the integrity
checker smart view (see Section 3.3) helps the analyst detect in-
tegrity breaches in these apps. We do not describe the steps an
analyst takes to formulate hypotheses.

4.2.1 Detecting Modifications to Android Immutables

App description. TRAQ is a data gathering and relaying app. It
allows for planning of strategic missions as well as audio and video
recording and taking geo-tagged snapshots through the camera based
on the GPS location. It contains 422 Java files (63083 lines of code).

From the description, the analyst infers that the GPS location
reported by the app is critical to its integrity, as all functionalities
rely on its correctness. The analyst then invokes the integrity checker

TRAQ_unobfuscated

com.parc.aecis.android.app.camera

MainScreen

onStart

if ((intent != null) && intent
.hasExtra("lat") && (intent

.hasExtra("lon")))

_passedInLoc = new Location("gps");

_passedInLoc.setLatitude(intent.getDoubleExtra("lat", 0.0));

_passedInLoc.setLongitude(intent.getDoubleExtra("lon", 0.0));

_passedInLoc.setAccuracy(-1.0f);

com.parc.aecis.core.android.dataviews

GPSLocationDataView

LocalLocationListener

onLocationChanged

if ((longitude >= 62.45 &&
longitude <= 73.10) &&
(latitude >= 25.14 &&
latitude <= 37.88))

location.setLatitude(location.getLatitude() + 5.173);

location.setLongitude(location.getLongitude() + 9.252);

com.parc.aecis.android.app.mic

MainScreen

onStart

if (intent
.hasExtra("lat") &&

(intent
.hasExtra("lon")))

_passedInLoc = new Location("gps");

_passedInLoc.setLongitude(intent.getDoubleExtra("lon", 0.0));

if (intent != null)

_passedInLoc.setLatitude(intent.getDoubleExtra("lat", 0.0));

com.parc.aecis.android.app.geonote

GeoNoteWithHistoryMainScreen

onStart

if (intent != null)

if (intent
.hasExtra("lat") &&

(intent
.hasExtra("lon")))

_passedInLoc = new Location("gps");

_passedInLoc.setLatitude(intent.getDoubleExtra("lat", 0.0));

_passedInLoc.setLongitude(intent.getDoubleExtra("lon", 0.0));

GeoNoteConfig

onCreate

if (extras != null)

if (extras
.containsKey("markIconID"))

_iconID = extras.getString("markIconID");

if (null != _iconID)

_iconImage.setImageBitmap(TIGRIcons.getImageBitmap(this, _iconID));

TIGRIcons tigrIcons = new TIGRIcons(this);

TIGRIcons.Item item = tigrIcons.getItemForId(_iconID);

_iconLabel.setText(item.name);

_doneButton.setEnabled(true);

String customLabel = extras.getString("markCustomLabel");

if
(customLabel

!= null)

_customLabel.setText(customLabel);

_manuallyEnteredCustomLabel = true;

String details = extras.getString("markDetails");

if (details != null)

_details.setText(details);

if (extras
.containsKey("lat") &&

extras
.containsKey("lon"))

_passedInLoc = new Location("gps");

_passedInLoc.setLatitude(extras.getDouble("lat"));

_passedInLoc.setLongitude(extras.getDouble("lon"));

tigrIcons.close();

android.jar

android.location

Location

setLatitudesetLongitudesetAccuracy

callcall

callcall

call

call

call

call

call

call

call

com.parc.aecis.core.android.dataviews

GPSLocationDataView

LocalLocationListener

onLocationChanged

if ((longitude >= 62.45 &&
longitude <= 73.10) &&
(latitude >= 25.14 &&
latitude <= 37.88))

location.setLatitude(location.getLatitude() + 5.173);

location.setLongitude(location.getLongitude() + 9.252);

android.jar

android.location

Location

setLatitudesetLongitudesetAccuracy

call

call

Figure 6: Integrity check smart view with Android-specific im-
mutable: GPS location integrity is critical for the TRAQ app. Under
certain conditions (magnified, top), the app corrupts the Android
GPS location (magnified, bottom).

smart view (see Section 3.3) in the Android Malicious Flow Visual-
ization Toolbox specifically for the predefined Android immutables
for GPS location. Figure 6 shows the latitude and longitude variables
in android.location.Location. The figure reveals five different pro-
gram locations that write to these predefined immutable variables.

The analyst inspects the source code for each condition by click-
ing on the condition. One of the conditions under which these
variables are modified (magnified in the figure) is clearly suspicious,
as it modifies these immutables conditionally for only certain lati-
tudes and longitudes (Listing 5). This condition corresponds to a
geographical region at the border of Afghanistan and Pakistan. This
serves as evidence to confirm the hypothesis that the integrity of
Android GPS location information is compromised.

Listing 5: LocalLocationListener.onLocationChanged

private class LocalLocationListener implements
LocationListener {

@Override
public void onLocationChanged(Location location) {
double latitude = location.getLatitude();
double longitude = location.getLongitude();
if((longitude >= 62.45 && longitude <= 73.10)
&& (latitude >= 25.14 && latitude <= 37.88)) {

// Malware corrupts GPS location when
// device is in Afghanistan or Pakistan
location.setLongitude(location.getLongitude()
+ 9.252);
location.setLatitude(location.getLatitude()
+ 5.173);

}
...

}
...

}

4.2.2 Detecting Modifications to App Immutables

App description. CalcC is a simple calculator app consisting of 2
Java files and 482 lines of code. From the description, the analyst
decides that correct calculation is critical to the app’s integrity.

The analyst wants to check if the integrity of calculator is com-
promised by providing incorrect results under certain conditions.
After inspecting the code, the analyst determines that the variable
runningResult should be treated as an app-specific immutable.

The analyst invokes the integrity checker smart view (Section 3.3)
and selects the runningResult variable. The smart view in Figure 7
reveals that the app adds a random number to runningResult under
certain conditions to corrupt the result (Listing 6).

This case study showed that to identify integrity breach, analysts
may have to select app-specific immutables for integrity checks.

com.bae.drape.gui.calculator

CalculatorActivity

handleOperation

runningResult = runningResult / currentNum;

break

if (newOperator
.equals(Operation

.EQUALS))

if (numOps == 3)

runningResult = rand.nextDouble() * rand.nextInt();

break

→ if (hasChanged)

switch (operator)

case PLUS:

runningResult = runningResult + currentNum;

break

case MINUS:

runningResult = runningResult - currentNum;

case MULTIPLY:

runningResult = runningResult * currentNum;

break

case DIVIDE:

Figure 7: Integrity check visual model with App-specific immutable:
runningResult is integrity critical for the CalcC app. Under certain
conditions, the app corrupts runningResult.

Listing 6: Calculator.handleOperation

private void handleOperation(Operation newOperator){
if (hasChanged) {
switch (operator) {
case PLUS: ...
case MINUS: ...
case MULTIPLY: ...
case DIVIDE: ...

}
if (...) {
if (numOps == 3) {
// Malware corrupts calculator result

runningResult = rand.nextDouble() * rand.nextInt();
}

...
}

}
}

5 RELATED WORK

Automated analysis tools. Detecting Android specific malicious
behavior is hard because it is often hidden amidst several other le-
gitimate functionalities provided by Android. Hence, sophisticated
one-of-a-kind Android malware are beyond the radar of detection
approaches that rely on only traditional static and/or dynamic anal-
ysis [4, 20, 30]. Moreover, their practical applicability is limited
because some of them require annotations [19], which are generally
unavailable.
General comprehension and visualization tools. Existing tools
for source code visualization [13] and program understanding such
as Source Insight [9] come with a limited set of features that are
inadequate for identifying sophisticated Android malware. The
distinguishing aspects of our visual models is their specific relevance
to Android, and their composability.
Analyst-friendly Android malware detection tools. The research
papers that come closest to our approach and toolbox in helping
analysts are: (1) MAMA [29], which analyzes the permissions from
the app’s Manifest file and the features, then uses machine learning
to classify apps as malware, and (2) Anadroid [25], which performs
static analysis to provide the analyst a list of semantic predicates
that characterize an app’s behavior. Neither MAMA nor Android
offer visual models to assist the human analyst to visualize and spot
malicious behavior.
Colluding Apps. Our toolbox also can also help detect colluding
apps [15,28]. Colluding apps orchestrate malicious behavior through
Android services such as Intents. As an example, an app can send

sensitive information to another app using an Intent, and the app re-
ceiving the Intent can leak the information to the internet. Flows due
to Intents are invisible because Intents are sent and received using
asynchronous Android APIs. They follow a producer-consumer pat-
tern similar to exception flows. We have also developed a smart view
to visualize flows between apps via Intents, which is not described
in this paper.

Other related work attempts to verify that an app’s behavior ad-
heres to its stated functionality using crowdsourcing [16], natural
language processing [27], or clustering [21].

To the best of our knowledge, ours is the only toolbox that pro-
vides interactive visual graph models to understand an app’s inter-
actions with the Android subsystems, match corresponding throw
and catch blocks via exceptional flows, and identify modifications
of Android-specific and app-specific sensitive data.

6 CONCLUSION

Understanding an app’s complex interactions with Android and
the open-ended search for malicious functionality are the key chal-
lenges for detecting sophisticated Android malware. This paper
presented a human-on-the-loop approach and associated Android
Malicious Flow Visualization Toolbox to help human analysts detect
sophisticated malware. In this approach, a human analyst formu-
lates hypotheses about how malware could violate confidentiality,
integrity or availability (CIA) properties, and gathers evidence to
validate the hypotheses. Specifically we presented interactive visual
models called smart views for visualizing the interaction of an app
with Android subsystems, visualizing throw and catch events in the
code are connected via exceptional flow semantics, and visualizing
paths involving conditions under which an app modifies integrity
critical variables in the app or Android.

We illustrated three case studies consisting of confidentiality and
integrity breaches. These show how the toolbox helps an analyst to
visualize malicious behavior in an app on-demand, and to compose
them as evidence of violation of CIA properties. An important
direction for future work is to perform user studies to systematically
study the impact of our approach and toolbox on analysts of varying
expertise and experience, using real world malware databases.

ACKNOWLEDGMENTS

We thank our colleagues from Iowa State University and EnSoft for
their help with this paper. Dr. Kothari is the founder President and a
financial stakeholder in EnSoft.

REFERENCES

[1] Android api documentation for displaying camera previews.
http://developer.android.com/reference/android/hardware/

Camera.PreviewCallback.html. Accessed: Jan. 2016.
[2] Android developer reference. http://developer.android.com/

reference/. Accessed: Jan. 2016.
[3] Android malicious flow visualization toolbox. https:

//kcsl.github.io/AMFVT/. Accessed: Jul 2017.
[4] Darpa automated program analysis for cybersecurity. https:

//www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-11-63/listing.html.
Accessed: Jan. 2016.

[5] Darpa space/time analysis for cybersecurity. https://www.fbo.gov/
spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html. Accessed: Jan.
2016.

[6] First-known targeted malware attack on android phones steals contacts
and text messages. http://www.forbes.com/sites/parmyolson/

2013/03/26/first-known-targeted-malware-attack-on-android-

phones-steals-contacts-and-text-messages/. Accessed: Jan.
2016.

[7] Permission to spy: An analysis of android malware targeting ti-
betans. https://citizenlab.org/2013/04/permission-to-spy-an-

analysis-of-android-malware-targeting-tibetans/. Accessed:
Jan. 2016.

[8] The real story of stuxnet. http://spectrum.ieee.org/telecom/

security/the-real-story-of-stuxnet. Accessed: Jan. 2016.
[9] Source insight. http://www.sourceinsight.com/. Accessed: Jan. 2016.

[10] Supervisory automation – humans on the loop. http://web.mit.edu/
aeroastro/news/magazine/aeroastro5/cummings.html. Accessed: Jul.
2017.

[11] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. Le Traon.
Empirical assessment of machine learning-based malware detectors for
android. Empirical Software Engineering, 21(1):183–211, Feb 2016.

[12] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: Analyzing
the android permission specification. In Proceedings of the ACM
Conference on Computer and Communications Security, pp. 217–228.
ACM, 2012.

[13] S. Bassil and R. Keller. Software visualization tools: survey and
analysis. In International Workshop on Program Comprehension, pp.
7–17, 2001.

[14] F. P. Brooks, Jr. The computer scientist as toolsmith ii. Communications
of the ACM, 39(3):61–68, Mar. 1996.

[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shas-
try. Towards taming privilege-escalation attacks on android. In 19th
Annual Network and Distributed System Security Symposium, 2012.

[16] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for android. In Proceedings of Security
& privacy in smartphones and mobile devices, pp. 15–26. ACM, 2011.

[17] T. Deering, S. Kothari, J. Sauceda, and J. Mathews. Atlas: A new way
to explore software, build analysis tools. In International Conference
on Software Engineering, ICSE Companion, pp. 588–591. ACM, 2014.

[18] W. Enck, M. Ongtang, and P. McDaniel. Understanding android secu-
rity. IEEE Security Privacy, 7(1):50–57, 2009.

[19] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. B. Barros, R. Bhoraskar, S. Han, et al. Collaborative
verification of information flow for a high-assurance app store. In
Conference on Computer and Communications Security, pp. 1092–
1104. ACM, 2014.

[20] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. Gaur, M. Conti,
and M. Rajarajan. Android security: A survey of issues, malware
penetration, and defenses. Communications Surveys Tutorials, IEEE,
17(2):998–1022, 2015.

[21] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior
against app descriptions. In Proceedings of the 36th International
Conference on Software Engineering, pp. 1025–1035. ACM, 2014.

[22] S. Greene. Security Program and Policies: Principles and Practices.
Pearson Education, 2014.

[23] B. Holland, T. Deering, S. Kothari, J. Mathews, and N. Ranade. Secu-
rity toolbox for detecting novel and sophisticated android malware. In
Proceedings of the International Conference on Software Engineering -
Volume 2, pp. 733–736. IEEE Press, 2015.

[24] S. Kothari, A. Deepak, A. Tamrawi, B. Holland, and S. Krishnan. A
"human-in-the-loop" approach for resolving complex software anoma-
lies. In IEEE International Conference on Systems, Man, and Cyber-
netics, pp. 1971–1978, 2014.

[25] S. Liang, M. Might, and D. Van Horn. Anadroid: Malware analysis of
android with user-supplied predicates. Electronic Notes in Theoretical
Computer Science, 311:3–14, 2015.

[26] K. Munro. Deconstructing flame: the limitations of traditional defences.
Computer Fraud and Security, 2012(10):8 – 11, 2012.

[27] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. Whyper: to-
wards automating risk assessment of mobile applications. In USENIX
conference on Security, pp. 527–542. USENIX Association, 2013.

[28] A. Sadeghi, H. Bagheri, and S. Malek. Analysis of android inter-app
security vulnerabilities using covert. In International Conference on
Software Engineering-Volume 2, pp. 725–728. IEEE Press, 2015.

[29] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P. G.
Bringas, and G. Álvarez Marañón. Mama: manifest analysis for mal-
ware detection in android. Cybernetics and Systems, 44(6-7):469–488,
2013.

[30] S. Schmeelk, J. Yang, and A. Aho. Android malware static analysis
techniques. In Cyber and Information Security Research Conference,
pp. 5:1–5:8. ACM, 2015.

http://developer.android.com/reference/android/hardware/Camera.PreviewCallback.html
http://developer.android.com/reference/android/hardware/Camera.PreviewCallback.html
http://developer.android.com/reference/
http://developer.android.com/reference/
https://kcsl.github.io/AMFVT/
https://kcsl.github.io/AMFVT/
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-11-63/listing.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-11-63/listing.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html
http://www.forbes.com/sites/parmyolson/2013/03/26/first-known-targeted-malware-attack-on-android-phones-steals-contacts-and-text-messages/
http://www.forbes.com/sites/parmyolson/2013/03/26/first-known-targeted-malware-attack-on-android-phones-steals-contacts-and-text-messages/
http://www.forbes.com/sites/parmyolson/2013/03/26/first-known-targeted-malware-attack-on-android-phones-steals-contacts-and-text-messages/
https://citizenlab.org/2013/04/permission-to-spy-an-analysis-of-android-malware-targeting-tibetans/
https://citizenlab.org/2013/04/permission-to-spy-an-analysis-of-android-malware-targeting-tibetans/
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
http://www.sourceinsight.com/
http://web.mit.edu/aeroastro/news/magazine/aeroastro5/cummings.html
http://web.mit.edu/aeroastro/news/magazine/aeroastro5/cummings.html

	Introduction
	Human-on-the-loop Malware Detection Approach
	Three-Phase Malware Detection
	Illustration of Three-Phase Malware Detection

	Android Malicious Flow Visualization Toolbox
	Android Subsystem Interaction View
	Exception Flow View
	Integrity Checker View

	Case Studies for Evaluation
	Confidentiality Leak
	Phase I, Automated Exploration
	Phase II, Hypothesis Generation
	Phase III, Validating the Hypotheses

	Integrity Breach
	Detecting Modifications to Android Immutables
	Detecting Modifications to App Immutables

	Related Work
	Conclusion

