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Abstract—With rising privacy concerns and the widespread
adoption of social media platforms, it becomes necessary to
examine how much information is still exposed after privacy
protection mechanisms are enabled. Malicious attackers and
investigators looking to utilize social media often face privacy
and platform restrictions that serve both to protect the privacy
of individuals and to protect the economic livelihood of the
social media platform. This work focuses on revealing private
social contacts as a first step to a larger reconnaissance of a
target Online Social Network (OSN) profile. In many OSNs the
friends that are hidden when a user enables privacy protection
mechanisms may still be discovered by visiting the profiles of the
target’s friends and searching for public references to the target
account. For large OSNs such as Facebook it would be unfeasible
to search large portions of the network to discover friends of the
target. In this work, we review existing Social Network Analysis
(SNA) research to examine how it can be exploited to efficiently
discover a majority of private friends. As our contribution, we
propose a greedy search algorithm for enabling efficient discovery
of private friends on social networking sites, which has shown
a 33.6% to 41.6% improvement over a standard breadth-first
search on synthetically generated social networks as real-world
social networks.

I. INTRODUCTION

From the perspective of an investigator or cyberstalker an
Online Social Network (OSN) can potentially offer valuable
information concerning a target. OSNs contain status updates,
personal pictures, hometown information, religious and po-
litical views, relationship information, and most importantly
social connections. When investigating a target one of the first
steps is to discover the target’s friends and social contacts, but
with increasing concerns over privacy many users have begun
to enable privacy protections that obscure social contacts and
mask personal information. What many users don’t realize
however is that their online digital footprint is often larger
than they expect. By searching the neighboring nodes of the
target that do not enable privacy protection mechanisms, the
attacker can still discover the target’s social connections by
searching for friends that publicly declare a connection to
the target. Once the attacker has collected a list of previously
obscured friends the second step is to make a closer inspection
of each friend’s profile, photos, and online interactions that
may reveal personal details of the target. In this paper we
discuss the first step of this attack and focus on an algorithm
for efficiently uncovering private friends in a social graph with
privacy protections.

This attack has practical purposes in the Open Source Intel-
ligence (OSINT) community by providing investigators with
a tool to aid in background investigations, validating alibis, or
creating pattern-of-life matrices. In this study we found that
we could discover private friends on social networking sites
with a 33.6% to 41.6% improvement over a standard breadth-
first search on synthetically generated social networks as well
as major improvements on real-world social networks.

A. Privacy Restrictions
With growing privacy concerns, many social networking

platforms have continued to add privacy control mechanisms
to restrict access to private information. As of May 2010,
Facebook offered an excess of 170 privacy settings and
maintained a privacy policy longer than the U.S. Constitution
[14]. Despite growing privacy concerns and public calls for
increased legislation to enforce the protection of individual
privacy, a late 2010 crawling of Facebook revealed that only
about a quarter of Facebook users enable privacy protections
that restrict access to their friend lists [8]. In a 2008 telephone
based survey, it was found that approximately 50% of adults
and more than 75% of teens thought it would be difficult or
impossible to find out who they were based on the information
publicly available in restricted social networking profiles [12],
which may indicate a false sense of privacy when dealing
with OSNs. A more recent survey conducted in early 2012,
shows that profile pruning (removing personal information)
and unfriending contacts in the interest of privacy is on the
rise [13].

B. Platform Restrictions
Information flowing into online social networks is collected

on a massive scale, but is tightly controlled by the social
media platform regarding how it flows out. Social networking
platforms generally control information flowing out based on
social relationships, user-based privacy settings, as well as rate
limiting, activity monitoring, and IP address based restrictions.
While many access control mechanisms are often put in place
to protect the privacy of the user, other mechanisms are often
added or intentionally handicapped to protect the economic
livelihood of the service platform.

C. Data Availability
In the worst-case scenario for the attacker, the desired

information may have never been gathered by platform, such



as when a user chooses not to provide information on a
social networking profile. If the desired information was
never recorded, an attacker has no hope of discovering the
information. In a more typical case, the target information
exists, but privacy and platform restrictions introduce a fog that
masks large portions of the desired information. As a result,
the attacker is forced to develop techniques of exploring the
fog and examining the digital footprints left behind by user
interactions.

D. Data Longevity

The social graph is far from static, relationship dynamics
change frequently and profiles are updated constantly. Face-
book claims that of its approximately 850 million users, over
half its users log in at least once a day [16]. Previous studies of
the Facebook social graph have limited collection periods to a
maximum of one to two weeks (depending on the type of data)
[20] [7] to limit the corruption of data due to changes in the
social graph during collection periods. Monitoring the changes
of social content is also an important source of information for
understanding the dynamics of the social graph. We can think
of each data access as a snapshot in time that is capturing the
state of the social graph at collection time.

In Section 2 we discuss some preliminary works that
review common properties of social networks that are useful
to understanding the algorithm we later propose for finding
private friends. In Section 3 we formally state the problem
definition and outline some intuitions. Section 4 describes our
proposed algorithm for discovering private friends. In Section
5 we discuss our results and then we provide some concluding
remarks in Section 6.

II. PRELIMINARIES

There are many metrics used to describe graph structures,
but when dealing with social networks researchers tend to
describe social graphs in terms of size, degree distribution,
average shortest path, and clustering. This section briefly
reviews each metric in order to build a foundation for the
rest of this work.

First, we define an undirected graph G = (V,E) to be
a set of vertices (nodes) V connected by the set of edges
(relationships) E. For a given pair of vertices A and B we
denote the existence of an undirected edge between A and B
with the notation < A,B >, where < A,B >=< B,A >.

A. Size

The number of nodes n = |V | in a graph usually defines the
size of a social network. Consequently, size is an exemplary
metric for expressing the scope of information contained in a
graph. Managing large social graphs with many relationships
can be very resource intensive. A 2010 estimate of the over-
head required to crawl the Facebook social graph was roughly
44 Terabytes of data [7]. Another useful metric is the number
of edges in the graph. An undirected graph can have at most
n(n−1)

2 edges. With the set of edges E and the set of vertices
V we can calculate graph density (a measure that represents

the ratio of the number edges to the maximum number of
edges in an undirected graph) for an undirected graph as:

density =
|E|

|V |(|V |−1)
2

=
2 ∗ |E|

|V |(|V | − 1)
(1)

B. Degree Distribution

Aside from knowing the number of nodes in a network,
we often want to describe the distribution of friends (node
degrees) among all nodes in the network. A degree is defined
as the number of adjacent neighbors connected to a given
node. Many social networks have a degree distribution that
asymptotically follows a power-law distribution (also known
as a Pareto distribution) as in the following relation (where k
is the degree and λ is a variable parameter usually 2 < λ < 3)
[9]:

P (k) ∼ k−λ (2)

Graphs with degree distributions that follow a power-law are
called scale-free networks and are commonly explained using
a preferential attachment model. In a preferential attachment
model the rich (nodes with high degrees) get richer (gain
additional degrees faster) than the poor (lesser degree) nodes
[5] [4]. This property leaves a signature linear plot on a log-log
scale.

C. Average Shortest Path Length

The average shortest path length is the average of the
minimum length path (also know as a geodesic) required to
connect a given pair of nodes for each node pair in a connected
graph. When n = |V | is the number of nodes in the graph and
d(vs, vt) is defined as the shortest distance from a given pair
of vertices vs to vt (distance is 0 if vs = vt) the average
shortest path is defined as:

L =
1

n(n− 1)

∑
∀vs,vt∈V

d(vs, vt) (3)

In social networks, a small-world graph is a graph that has
an average shortest path length that scales proportionally with
the logarithm of the number of nodes in the graph [19].

L ∝ log n (4)

This small-world phenomenon is well observed in social
networks and is sometimes referred to by the six degrees of
separation concept that is associated with the work done in
the Stanley Milgram small-world experiment [18].

D. Clustering

Social networks tend to form definitive clusters of nodes
that are made up of tight knit groups of highly connected
nodes [19]. Supposing that a vertex Vi with edges Ei has f
friends (neighbors), it follows that a node can have at most
f(f−1)

2 edges. The local clustering coefficient Ci for a vertex
i is similar to density in that it is defined as the ratio of edges
that actually exist out of the set of possible edges a vertex can
have [6].

Ci =
2 ∗ Ei
f(f − 1)

(5)



The average clustering coefficient for the entire graph is
defined as:

C =
1

n

n∑
i=1

Ci (6)

III. PROBLEM DEFINITION

The goal of this study is to find the most (if not all) private
friends of a target of interest by using a limited number of
queries to search online social media websites. Most online
social networks provide an Application Program Interface
(API) to interact with the social graph and query information
about a given node. A private node is a node that returns little
to no information due to access restrictions imposed by a user.
As a result a list of the target’s friends may be obscured from
the public view when accessing a node directly, but target
friendships can still be verified by visiting the public friends
individually.

Social media websites impose global access restrictions
through rate limiting, access request quotas, and account
activity based banning making API calls a limited resource.
Due to the sheer size of most social networks it is unfeasible
for attackers to brute force guess the friends of a target. Based
on these metrics, we propose an algorithm for the efficient
discovery of private friends (private nodes) in Section 4.2.

Formally, we define an evaluation metric of one API call
to be the cost of expanding a single node to return the node’s
neighbors. Furthermore, a private node is defined as a node that
returns an empty neighborhood set ∅, whereas a public node
returns a non-empty neighborhood set. We define a target vt
to be a private node such that vt ∈ V in the undirected graph
G = (V,E). Vertex vt contains f hidden undirected edges
Et corresponding to each friend (neighbor of vt) represented
by the set F . A subset Fpub ⊂ F is the set of target friends
that publicly disclose an edge linking from vi to vt. That is,
the intersection of Ei ∩ Et 6= ∅ is not empty, which means
it contains one shared edge with the target node vt. Finally,
we define a starting vertex vs ∈ V 6= vt from which to
begin searching the graph. An efficient search is a search that
discovers most (if not all) nodes in Fpub that link to the target
node vt using the fewest API calls.

A. Intuitions

Consider this scenario. Bob, a high school student, has ten
friends at school but won’t tell us who his friends are. Even
though Bob won’t say who his friends are, we can still find
the same information by walking around the school and asking
students if they are friends of Bob. Assuming every student
at the school either tells the truth or refuses to answer the
question, we can exploit known social structures of the school
to create an efficient search strategy to reveal all of Bob’s
friends.

Social graphs tend form large numbers of triadic closures
of mutual friends [15], which means that if we ask Bob’s
best friend Jim (or any of Bob’s friends for that matter) who
their friends are, we are likely to find a set of friends that
are mutually shared between both Bob and Jim. Likewise,

it is more likely that a friend of Jim is also a friend of
Bob, as opposed to another randomly selected individual. We
can exploit the mutual friendship property of social graphs
by searching for mutual friends of a newly discovered friend
and the target. We use the number of times an individual has
been observed as a friend-of-friend of the target as a metric to
describe the priority in which we should interrogate friends-
of-friends.

Social graphs also have strong clustering properties [19],
so let’s now consider that the school is made up of various
clusters of students (e.g. the math team, the chess club, the
football team, the band, etc.) and that we know Bob is the
quarterback of the football team. It makes sense that we would
start by asking members of the football team if they are friends
of Bob because the members of the football team are more
likely to be friends with Bob. The members of the football
team are more likely to be friends with Bob because of the
tight clustering of mutual friends between the football team
clique. For the members of the math team, which share most
of their mutual friend connections with other members of math
team, a member is less likely than a member of the football
team to make connections to members in the football team
cluster. That’s not to say that Bob and Mike (a member of the
math team) can’t be friends, it just that Bob is more likely to
have more friends on the football team than the math team.

Let’s pretend that we don’t know that Bob is the on the
football team. It makes less sense to interrogate the entire math
team to see if they are friends with Bob than if we picked a
few representative students from each clique to ask if they
are friend’s of Bob. The goal is to spend less time searching
clusters that Bob is excluded from and more time searching
clusters in which Bob is included. When we don’t know what
cluster Bob belongs to, it’s better to cast out a wide net and
interrogate individuals from each cluster (the math team, the
football team, the chess club, the band, etc.) until we find a
cluster that includes Bob.

In order to maximize the number of new nodes discovered
with each node expansion we should choose to expand nodes
that we have seen the fewest times first. On average, unex-
panded nodes that have been observed more reveal less new
nodes because the more a node has been observed the more
neighbors of a node have been previously discovered. In the
context of mutual clusters of friends expanding lesser-observed
nodes has an effect of crawling away from clusters towards
other clusters. Reversing the priority biases the crawl order
towards staying within a cluster until the entire cluster has
been explored. In our proposed algorithm we use this as a
secondary heuristic to maximize search potential by breaking
out of clusters that don’t contain friends of the target.

IV. HUNTER-SEEKER ALGORITHM FOR
PRIVATE FRIEND DISCOVERY

A. Data Collection

In order to search for private friends the social graph must
be crawlable. On the professional networking site LinkedIn
crawling is not possible because all contacts are considered



private. Other networks such as Twitter and Facebook provide
API’s to assist in querying the networks. In the case of
Facebook, the API is limited to the scope of the authenticated
account’s social network, preventing full graph traversals in
both the old Facebook REST API and the newer Graph API.
As a proof of concept for our attack, we wrote our own
Facebook crawler using the Apache Commons HTTPRequest
package and the Jericho HTML Parser to authenticate and
make raw HTTP requests to crawl the Facebook social graph
by navigating the HTML web interface. To avoid obstacles that
make it difficult to screen-scrape such as JavaScript and AJAX
requests we navigate to the mobile version of the Facebook
interface that returns the same content in simple HTML.

B. Algorithm Design

Listing 1. Hunter-Seeker Algorithm

f r i e n d s = map ( o r i g i n , t a r g e t ){
i f ( o r i g i n == t a r g e t | | o r i g i n . i s p r i v a t e )

re turn e r r o r / / n o t h i n g t o work w i t h
pq . enqueue ( o r i g i n , PRIORITY 0 )
ne ighborhood , s e a r c h e d = {}
whi le ( pq . s i z e > 0){

node = pq . dequeue ( )
i f ( s e a r c h e d . c o n t a i n s ( node ) ){

c o n t in u e / / a l r e a d y e x p l o r e d node
} e l s e {

n e i g h b o r s = node . expand ( )
i f ( n e i g h b o r s . c o n t a i n s ( t a r g e t ) ){

n e i g h b o r h o o d . add ( node )
pq . enqueue ( n e i g h b o r s , PRIORITY 1 )

} e l s e {
pq . enqueue ( n e i g h b o r s , PRIORITY 0 )

}
s e a r c h e d . add ( node )

}
}
re turn n e i g h b o r h o o d

}

Given the information available to the algorithm at runtime,
the algorithm behaves in one of two modes: hunter or seeker.
In hunter mode, the algorithm has expanded a friend of the
target and searches the friend’s friends discovered for mutual
friends of the target (giving the most discovered nodes of
a known target friend search priority). In seeker mode, the
algorithm has no friends-of-friends left to explore and attempts
to maximize its potential of finding a new friend of the target
by prioritizing the exploration of nodes expected to reveal the
highest number of new nodes.

The private friend discovery algorithm (nicknamed Hunter-
Seeker) shown in Listing 1 uses a priority queue with the
properties listed below to manage the order of node explo-
ration.
• Items in the priority queue are sorted by two scores (a

primary score and a secondary score)
• A primary score for an item increases each time the item

is added to the queue by a value defined on each add
• A secondary score for an item increases by one each time

the item is added to the queue
• A higher primary score takes precedence over a lesser

primary score

• A non-zero primary score always takes precedence over
a secondary score

• A lower secondary score is used to break ties between
the primary scores

• A tie between secondary scores is broken by order of
arrival in the queue

An example run of the algorithm is provided on the toy
network shown in Figure 1. The corresponding search tree
steps taken by the Hunter-Seeker algorithm are shown in
Figure 2 and traced in Table I. As the search tree is expanded
unsearched nodes that are discovered to be a friend-of-friend
of the target will have their primary score values incremented
by one. Every time a node is observed in the neighborhood
of another node, the secondary priority is incremented by one.
Scores are only tracked for nodes that have not been searched.
The target node is never searched because it is assumed to be
private and would not have any affect on the queue order.

Fig. 1. Sample Toy Network

Fig. 2. Toy Network Search Tree for Hunter-Seeker Algorithm



TABLE I
HUNTER-SEEKER ALGORITHM ON TOY NETWORK (START NODE: E, TARGET NODE: G)

Step Searching Priority Queue {Node , Primary Score Value : Secondary Score Value} Friends Discovered
1 E [{E,0:1}] []
2 B [{B,1:1}, {D,1:1}, {F,1:1}] [E]
3 F [{F,1:1}, {D,1:2}, {A,0:1}, {C,0:1}] [E]
4 H [{H,1:1}, {D,1:2}, {A,0:1}, {C,0:1}] [EF]
5 I [{I,1:1}, {J,1:1}, {D,1:2}, {A,0:1}, {C,0:1}] [EFH]
6 J [{J,2:2}, {D,2:3}, {A,1:2}, {C,0:1}] [EFHI]
7 D [{D,2:3}, {A,1:3}, {C,0:2}] [EFHI]
8 A [{A,1:3}, {C,0:3}] [EFHI]
9 C [{C,0:4}] [EFHI]

C. Analysis

1) Optimal Friend Discovery: In the optimal case, a per-
fect algorithm would discover every private friend using the
absolute minimum required API calls in the process. If we
say that the target has f friends, then we find that for each
node in the friends list we must make one API call to confirm
the friend is indeed a friend. We must then add to f the
minimum number of nodes required to reach each friend from
a given start point to cover the optimal case. The minimum
number of nodes is defined as the minimum spanning tree
that includes the start node and each of the required friend
nodes. The rest of the nodes may optionally be included in
the minimum spanning tree if they are required to complete
a path between required nodes in the tree. This problem is
classified as the node-weighted Steiner tree problem [10] and
is computationally expensive to compute.

For the purpose of simplicity we will assume the optimal
case is defined by an algorithm that is either extremely lucky
or has access to an all knowing oracle that reveals the friend
list to the search agent. Upon learning the friends list, the
search agent simply needs to confirm each friend at a rate of
one friend per API call. On a scatter plot like the plots shown
in Figure 6 the optimal case would be a nearly vertical sloped
line with the x coordinate starting at 1

n API calls and moving
to f

n API calls and the y coordinate starting at 1
f friends ending

at f
f = 1 friends. A successful algorithm implementation is

that one that approaches the optimal case once a target friend
is discovered and on average does better than BFS, which is
the standard search method for crawling social networks at
this time.

2) General Case: Given what we know of social networks,
we assume that the probability that an edge exists between
nodes A and C given that there exists a pair of edges between
nodes A and B and nodes B and C is more likely than the
probability that an edge exists between a pair of randomly
selected nodes. This assumption is supported by observations
of triadic closures and clustering in real-world social networks
as discussed earlier.

P (< A,C > | < A,B > and < B,C >) >
1

2
(7)

The base case structure that our algorithm exploits is shown
in Figure 3. In the base case, node A is the target and the
algorithm starts searching at node D. A BFS would discover

Fig. 3. Base Case Structure

nodes in the order of DBEC giving priority to node E over
node C because it was discovered earlier. If we consider the
distance of a node to be the shortest path that connects the
target and a node, we find that all friends are located distance
1 from the target. When our algorithm searches node B it
discovers that B is a friend of the target and that node C is at
most distance 2 from the target. Before node C is searched,
it is unknown if there is a path of distance 1 from the target
A, but from the triadic closure properties of social networks
we know that there is a better than random chance that a
path of distance 1 does exist. Node E is located at distance 3
and statistically has less chance of being connected to node A
than node C, so it is better to give priority to node C. Nodes
of distance 3 or greater (at runtime) are never given search
priority. Our algorithm searches the base case structure in the
order of DBCE.

While a BFS is not random, we have found experimentally
that the average probability that the next node in a BFS
queue is a friend of the target is comparable to a randomly
ordered search queue (shown in Figure 4). The Hunter-Seeker
algorithm exploits non-random properties in social networks,
which leads us to believe that our algorithm should outperform
a BFS. To support this claim we offer the following logical
steps.

Step 1) Assume the following graph property:

P (< A,C > | < A,B > and < B,C >) >
1

2
. (8)

Step 2) Let,

(a) f be the number of friends of the target
(b) n be the number of nodes in the graph
(c) λ represent the probability that the next node in the search

queue is a friend of the target for the ith friend discovered.

Step 3) Regardless of the algorithm, the probability of a
node being a friend of the target is f

n−1 ≈
f
n .



Step 4) For a randomly filled search queue, the probability
of the next node in the queue being a friend is ( f

n−1 )(
f−1
n−2 ) ≈

f2

n2 . The probability of i next nodes in the queue being friends

is
i∏
0

f−i
n−i−1 ≈ ( fn )

2, where i < f . The probability of finding

a friend after discovering all f friends is zero.
Step 5) The approximate number of nodes searched to find

a friend is n ∗ 1
f−1 ≈

n
f . The approximate number of nodes

searched to find the ith friend is n(i)
f . Therefore the average

case of λ for a random search of the graph is defined by
f−i

n−n(i)
f −1

, where 1 ≤ i ≤ f .

Step 6) Experimentally, we determine that the average
case for a BFS on a graph with the assumed properties
approximates a random search of the graph in terms of λ.
Figure 4 shows the calculated values for a random search
(which we have verified experimentally) and an average of 500
runs of a BFS on randomly selected start and target nodes from
a 1000 node Watts-Strogatz graph with an average 130 friends.
At runtime, after each new friend is found, λ is computed by
calculating f−ff

n−s−1 , where ff is the number of friends found
and s is the number of nodes searched. The results show that,
on average, a BFS is comparable to a random search.

Fig. 4. Comparison of BFS to Random Search

Step 7) The Hunter-Seeker algorithm exploits the probabil-
ity that a friend-of-friend relationship has a λ value greater
than 1

2 for nodes neighboring a friend by frontloading friend-
of-friend nodes in the queue. We can therefore assume that
while the majority of friend nodes exist the Hunter-Seeker
algorithm will maintain a ith-λ probability of ( f

n−1 )(λ)
i ≈

( fn )(λ), where λ > 1
2 .

Finally, we can show that the Hunter-Seeker algorithm is
better than a random search, which is comparable to a BFS,
by showing that ( fn )

2 < ( fn )(λ) because f
n << λ. Note

that because the Hunter-Seeker algorithm places priority on
searching nodes more likely to be friends earlier in the search,
the algorithm is left with fewer friends to find later in the
algorithm execution. The result is that after about 80% of the

friends are discovered the performance of the algorithm begins
to decline (shown later in our Results Section).

3) Worst Case:

Fig. 5. Worst Case Structure

In the worst case, our algorithm searches a structure like the
one shown in Figure 5. If the target node is A and the starting
node is node C a BFS could add nodes B and D to the search
queue (order is completely arbitrary for BFS). Once node B
is searched, a BFS and our algorithm diverge as the Hunter-
Seeker algorithm gives priority to nodes 1 through N , which
are all bad guesses. In this case, the algorithm is led astray by
the promise of mutual friends of the target and node B while
a BFS outperforms by giving priority to node D over nodes
1 through N . This case contradicts our basic assumption of
triadic closures because in this graph
P (< A,C > | < A,B > and < B,C >) = 0,
but we know that triadic properties do exist in online social
networks from empirical observations [15]. Through the law of
averages we know that even though the worst case structure
shown in Figure 5 may exist as a subgraph, there must be
more cases like the structure shown in Figure 3 that our
algorithm successfully exploits for the triadic closure property
to be observed. The result is that our algorithm performs better
than a BFS in an average case for graphs with social network
properties.

V. RESULTS
In this section, we show the evaluation results of both

synthetic data and real-world data.

A. Test Framework

To generate synthetic data, we assume that online social
networks such as Facebook have properties similar to the
Watts-Strogatz small-world random graph model. Previous
works [19] [7] have show that the average shortest path length
and clustering coefficients of real-world social graphs can be
reasonably well modeled by the Watts-Strogatz small-world
graph. It is known that the Watts-Strogatz model does not
reproduce the power-law degree distributions found in most
observations [9] of social networks, but at the time of this
writing we could not find a random graph model that could
accurately represent the set of all properties observed in real
world social networks. Our algorithm leverages mutual friend
relationships and group clique formation that we find present
in online social networks such as Facebook [11], which of the
models we evaluated (Erdős-Rényi Model, Watts-Strogatz, and



Barabási-Albert), the Watts-Strogatz model demonstrated best.
To evaluate our algorithm’s performance we run it on datasets
generated using the Watts-Strogatz random graph model and
later verify our model results by comparing the results of
algorithm on real-world social networks.

We generate Watts-Strogatz random graphs using the ad-
vanced graph model generator plugins available for the Gephi
graph visualization utility (http://www.gephi.org). We then
import the models into our test platform, which simulates the
role of an online social network by restricting the set of node
neighbors visible for a given node based on a single privacy
restriction that can be enabled or disabled for each node. At
run time we import a new random graph, enable privacy for
the target node and a variable percentage of the remaining
nodes, and run a test harness. The test harness chooses two
random start locations (one in the set of the target’s friends,
and one outside the set of the target’s friends) and records the
results of a BFS, DFS, and our algorithm for both types of
starting locations. The test harness is run over twenty or more
iterations where each iteration records a pair of data points for
each new friend discovered. The first data point corresponds to
the ratio of the number of API calls used to the total number
of nodes in the graph (the number of API calls required to
search every node in the graph). The second data point is the
ratio of the number of friends discovered to the actual number
of friends connected to the target node. After each iteration,
privacy settings are reset to prevent skewing the results of later
runs of the algorithm on the same dataset. The results are then
serialized to a file and exported to Matlab to be analyzed as
histograms and scatter plots.

B. Comparison to Existing Algorithms

To verify that our algorithm indeed works in a base case
scenario (i.e. when all nodes are public except for the target),
we tested our algorithm on a small test network of 1000
nodes generated using Watts-Strogatz model parameters of
G(n, k, p) = G(1000, 130, .2). We justify our average degree
k = 130 by equating it to the average number of friends a
user has on Facebook (a statistic shared by Facebook during
their F8 Developer Conference). We justify a random rewiring
probability value of p = .2 by intuitively reasoning that less
than half of friendship connections on Facebook are comprised
of random connections and because p = .2 generates a model
with an expected average clustering coefficient of C = .384,
which is within the range observed by previous work [11].

Examining the scatter plot results (shown top-left and
middle-left in Figure 6) shows that our algorithm using the
Hunter-Seeker strategy consistently performs better than both
BFS and DFS regardless of the starting location. When the
starting location is moved outside of the target neighborhood
both BFS and DFS are negatively impacted in terms of API
calls per friends discovered, but the Hunter-Seeker algorithm
remains relatively unaffected.

Histogram plots of the same graphs for the Hunter-Seeker
algorithm show the number of friends revealed in the first
percentages of the number of API calls to the total number

Fig. 6. Performance of Hunter-Seeker algorithm on Watts-Strogatz random
graph models. Note: The scatter plot graphs should be viewed in color.

of nodes includes the majority of all friends. We find that
the algorithm finds most of its target’s friends in the first
10-20% of the total nodes and then spends the rest of the
algorithm searching for the edge nodes that were not near the
target and most likely located in other clusters. At this point in
the algorithm, there is a surplus of bad guesses the algorithm
could make and very few right answers. A comparison of both
histograms confirms that the algorithm will produce similar
results for a random location in the graph versus a start
location inside the target neighborhood.

To compare our results to a larger graph we scaled the
graph by creating a Watts-Strogatz model with parameters
G(10000, 130, .2). The resulting graph took about 24 hours
to complete the test harness iterations of each algorithm on a
modern i7 laptop processor. The graph contained nk

2 = 650000
edges. Figure 6 (bottom) shows that as n increases the
number of nodes ignored by the Hunter-Seeker algorithms
also increases, widening the performance difference between
BFS and DFS and the Hunter-Seeker algorithm relative to n.
By integrating the area under the trend line curves of each
algorithm, we find that the Hunter-Seeker algorithm makes
a 33.6% to 41.6% improvement over a standard breadth-first
search on the 1000 and 10,000 node networks respectively.

C. Real World Networks

Perhaps the largest criticism of our results is that our random
graph models do not account for free-scale degree distributions



that are commonly found in online social networks. The lack
of random models that demonstrate free-scale distributions and
the small-world and clustering coefficient properties as well as
our inability to gather real-world results of our own (for legal
reasons) has left us ill-equipped to fully address this concern.
However, the results of our algorithm’s performance on similar
real-world networks discussed in this section leads us to
believe that our strategy is viable in online social networks.

After speaking with our University Institutional Review
Board (IRB) advising committee we were advised not to
proceed with a test that would break the terms of service
agreements defined by Facebook (and most other online social
networks). Instead we looked for existing social network
research that made public similar social network datasets.
We found datasets collected as part of a study on face-to-
face interactions in primary schools [17], trust networks [2],
and paper citation [3] and collaboration networks [1], which
are shown in Figure 7. These dataset contained mutual friend
relationships and clustering that we intuitively designed our
algorithm around, but we found that in some cases the context
of network was fundamentally different. One such example is
the Epinions online directed trust network, which we treated
as an undirected friendship network for the purposes of this
study. The results of our algorithm shown bottom left in
Figure 7 seem to suggest that directed trust relationships do not
translate well to undirected friendship relationships, meaning
the attacker should pay special attention to the context of the
network during analysis.

Fig. 7. Performance on Real-World Social Networks (Top Left: Primary
School Face-To-Face Network [17], Top Right: Astro-Physics Collaboration
Network [1], Bottom Left: Epinions Trust Network [2], Bottom Right: High
Energy Physics Paper Citation Network [3]). Note that these graphs are best
viewed in color.

D. Private Networks

To test our algorithm on private social networks we modified
our test harness to randomly privatize a percentage of the total
nodes (including the target) before selecting a start location.
The test harness then picked two start locations, one that was

inside the target network and one that was outside the target
network to begin the test data collection process like before.
We privatized nodes at 25%, 50%, and 75% on a n = 1000
node Watts-Strogatz random graph with parameters described
previously and ran the test harness. In the average case our
algorithm can discover n minus the number of privatized
friends, which is on average f∗25%, f∗50%, and f∗75%
respectively, where f is the average node degree (average
number of friends). The results are shown in Figure 8. The
algorithm is capped at these bounds because there is no way
to verify that a private friend and the target are friends since
both nodes are private.

As future work we aim to incorporate a third metric, the
distance from the target. Due to the fact that there is no
way to verify if a private node is a friend of a target (that
is also private) the upper bound is capped on the number of
friends we can discover, but some metrics may be useful to
denote nodes as likely but unverifiable friends of the target. In
our current implementation, we tried returning the discovered
friends along with a set of observed high-ranking friend-of-
friend nodes that could not verified as friends of the target
as likely friends, but there were far too many false positives
to make the set useful. With the addition of a third metric
(the distance from the target) it may be possible to reduce the
number of false positives and break through the upper bound
cap on private friend discovery.

Fig. 8. Hunter-Seeker on Private Social Networks

VI. CONCLUSION

A. Summary

Investigators and cyberstalkers looking to discover private
social contacts of a target in online social networks are
met with privacy and platform restrictions as well as data
availability and longevity issues. In this work, we reviewed the
common properties of online social networks and devised an
algorithm that exploits social network topologies to efficiently
discover private friends of a target.

Our attack addresses privacy restrictions by discovering
private friends of a target by exploiting mutual friend rela-



tionships and graph clustering properties. To address platform
restrictions we defined a platform based metric of API calls to
measure the algorithm’s performance, which motivated us to
optimize the algorithm to perform efficiently under practical
constraints. While there is little we can do to change the
availability of information, our algorithm does address data
longevity issues by serving as a mechanism to enable efficient
and automatic crawls of the social graph at times defined
by the attacker. While previously it would have been found
infeasible to search for a target’s friends, we have proposed
a practical, robust, and cost efficient algorithm to selectively
search for private friends. By doing so we have shown that an
attacker may be able to reproduce a target’s friend list despite
privacy protection mechanisms. Meanwhile, this attack may be
a useful tool for Open Source Intelligence (OSINT) analysts
in law enforcement fields.

We believe the implications of this work will primarily
impact social network users. It is unclear as to what a
reasonable expectation of privacy is and is not on online social
networking sites, but we can safely assume that users that
enable privacy protections are expecting at least some level of
privacy protection from the social networking platform. To
prevent this attack, users must enable privacy settings that
remove their profile from the public completely (including
a friend’s friend list), but the result of doing so is likely
to negatively impact the user’s social interactions by limiting
discovery by future contacts. We believe that most users are
more likely to risk revealing private information than com-
promising social interactions, which is the primary motivator
behind social networking sites, so the attack is difficult to
prevent on a large scale.

B. Discussions

We would like to expand our framework to study cross-
correlations between social networks. We believe that it may
be possible to utilize a second reference network or set of
reference networks to infer information that is not present in
a single network through the use of graph de-anonymization
techniques. A reference network may be gathered by exam-
ining an auxiliary social network or by saving portions of
the primary social network from previous algorithm runs to
enhance the performance of subsequent runs.

Finally, now that the groundwork has been laid to discover
private friends it would be advantageous to examine the next
stage of the attack and look at what can be learned about
a target through the information gleaned from neighboring
profiles. We believe that a wealth of information about a target
exists in messages, pictures, and interactions of friend profiles
that the target may be unaware of or unable to control.
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