W/

TAHére’s a hole in my bucket,
dear Liza — Examining side
channel leaks in web apps.

Benjamin Holland
ben-holland.com

Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

Quick Note Before We Get Started...

* With regard to some information in this talk:

— This material is based on research sponsored by
DARPA under agreement number FA8750-15-2-0080.
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

— The views and conclusions contained herein are those
of the authors and should not be interpreted as

necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA

or the U.S. Government.

Ml Qrl
Open Web Application
Security Project

About Me

B.S. in Computer Engineering (2005 - 2010)
— Wabtec Railway Electronics, Ames Lab, Rockwell Collins

B.S. in Computer Science (2010 - 2011)

M.S. in Computer Engineering and Information
Assurance (2010 - 2012)

— MITRE

* |SU Research Scientist (2012 - 2015)
— DARPA Automated Program Analysis for Cybersecurity
— DARPA Space/Time Analysis for Cybersecurity

 PHD in Computer Engineering (2015-??77?)

Ml Qrl
Open Web Application
Security Project

Talk Overview

e Establish a common understanding of side
channel vulnerabilities

* Provide some example side channel
vulnerabilities

— Physical 2 Hardware = Software
e Causes of side channels

* Discuss challenges in preventing/detecting
software side channels

UWASP
Open Web Application
Security Project

Setting the Stage

| |
=11 1

* How big is Henry’s bucket?
— What information do we have?

OWASP

Open Web Application

Securit y Project

Information Leakage (No Pun Intended)

What’'s a Side Channel?

e Historically side channels were used to describe
attacks to physical crypto hardware systems

A3 B3 A2 B2 A1 Bx Ao Bo

— Power analysis
— Timing information

] Enemy Cryptosystem
— Acoustics
— FaUItS S3 S2 S1 So
— Electromagnetic radiation A,| By | A | B, |A | B, |A | By| G,
* Light, heat, IR, etc. of1|1]|1|1]0|0|O0]0O
. . - - So S1 Sz 53 C4
* Some operations require T 1T T2lo0l0l1l0
more time, power, etc. to rJ' JASP
complete than others

Open Web Application
Security Project

B E Bl EN iR , I|i|u=
s QY (| YAlLl

HE/ -1 RERE

$50,000 prize to unscramble 5 shredded documents

Puzzles were comp
oy team “All Your S

Teadp 37 é“i%m.&b&g@ ad e o e naide. @ 0 pear DR
foe] &a\u&n\; begne ta. Mpe o w»&m
M_hjt&j Proceete s M—ﬂwﬁ”‘é‘\-‘l 25 e e

[TErv A 3267 \3\35 epted Cab
5\ é,a-_a,g JAX- A\A\\—[J&&A\A\—‘-&\\A \— LL Ak [aif A‘«
e MA_M_G# \QY.\'«% m
ey 337 YMWMMM
even A\ Agreel\ RIS
Tewnh M&ﬂm@w@m Neud. \?m oy,
Y boling e |

\

[Er1® o ciedd. S i
st M*Mkmn «\ o wﬁm
MERM A e NWM&HMMM@@& m‘c‘\\%
,,_,_,_AM“%_MW&:&,M&L Y_A}L
—.AMM ‘Q»;b M_Cmﬁfw&ug SR

%y
-

etely solved on December 2011
nreds Are Belong To U.S.”

UWASP

Open Web Application
Security Project

Paper Shredder Side Channel

* Alittle of life’s irony...
— ~9000 teams competed, 1 team solved all 5 puzzles

— Solution used hidden printer dots added by printer manufacturers and
U.S. Secret Service

— Vision recognition software detected dots printed on paper and used
dots as a reference guide to identify document fragments

— Pro-tip: Burn your documents you really want gone...

OWASP
gpum Web Application

Security Project

Don’t Touch Das Blinkenlights

ACHTUNG!
Alles turisten und non-teknischen
looken peepers! Das computermaschine
ist nicht fuer gefingerpoken und
mittengraben! Ist easy schnappen der
F4 FEELAANNANNNN

springenwerk, blowenfusen und
poppencorken mit spitzensparken.

Ist nicht fier gewerken bei
dummbkopfen. Das rubbernecken
sightseeren keepen das cotton-picken
hans in das pockets muss; Zo relaxen
und watschen der blinkenlichten.

Das Blinkenlight

Historically, the blinking lights indicated important things like the

state of the system, but as computers became faster and more

U[U_Jal[I atic

reliable the lights were either removed or left as diagnostic

indicators (example: networking hardware). rity Project

Blinkenlights Problem

* LEDs on/off time is very fast (almost instant)
— LEDs are usually used to control fiber optics

 LEDs were wired directly into the serial data line
— Each blink is a 1 on your network, LED offisa O

— Too fast for a human eye
— Not too fast for a circuit...and a telephoto lens!

Paper: Joe Loughry and David A. t‘*@l
Umphress. 2002. Information leakage
from optical emanations. ACM Trans. Inf. ©

r J 2N2222
or any similar NPN

p—-=e

To computer
Syst. Secur. 5, 3 (August 2002), 262-289. e @ OWASP

Open Web Applicatior
8 >

»
GND ecurity Project

Blinkenlights Solutions

* Duct tape over the LEDs works, but we still want
our blinkenlights!

— Pulse Stretching ®
Input: S e Original signas
| W 4 2 N\ X F |
Y Level activated sireicher (Sx)
/ ’ \ o S \/ X —
Cycles Data we can reod out of LED ofter stretching
Output: o 1 0 0 o I_ | ; “
L o5V Still possible to recover 99.999988% of bits.
/ ’ | I \ o Error correction codes can help us guess the rest.
Cycles
— Better approach = Low frequency sampling with a
latch till the next sample @U' UASP

Open Web Application
Security Project

Origins of Side Channels

e Short story: optimizations
— Reducing cost: power, heat, etc.
— Increasing speed/efficiency

e Consider synchronous vs. asynchronous digital logic
circuits

— Synchronous circuits operate on a fixed clock, all
operations take the same time, so the best case and worst
case times are the same

* Every case is the worst case

— Asynchronous circuits operate without a clock
independent of other modules, so there are distinct best,
worst, and average cases.

* Average case costs less than the worst case
©ownse

Open Web Application
Security Project

Side Channels in Software

* Leakage primarily through
— Timing information —
— Memory space usage —

* Content, order, size

——— Space/Time usage are related problems

* Optimizations everywhere...

) if(secret){
— Software algorithms doShortA():
* Branching, short-circuiting logic, looping, etc. }else {
— Compiler optimizations } doLongAction();

— Cache hits
— Process scheduling
— Branch prediction...and so on...

OWASP
Open Web Application
Security ec

urity Project

Demasking Google Users

1. Select Google users to target

2. Create a Google drive document and invite
targets (uncheck option to send notification)

3. Using HTML/JavaScript create a spear-phishing
site that identifies and customizes itself for the

target

—
takes longer to call onerror if visitor is a target

— Google has declined to fix this issue

UWASP
Open Web Application
Security Project

OpenSSL Timing Attack

 Timing attack against OpenSSL server to recover SSL private RSA key
— RSA decryption: m = ¢*d mod N, where N = pg
— If you know the factorization of N, then d = e~ mod (p - 1)(q - 1)
e |[ssue: Algorithm processing time was dependent on ciphertext and private
key
— Extra reductions in a Montgomery reduction (fast mod operation)

when ciphertext (c) approaches a multiple of g (¢ < g should be slower
than decryption of ¢ >q)

— OpenSSL uses two different multiplication routines: when ¢ < g fast
Karatsuba multiplication is used, otherwise the slower normal
multiplication is used since ¢ > g is likely smaller when computing
c mod q

 Performed over a network (dealing with network delays)
OWASP

pen Web Application
Security Project

OpenSSL Timing Attack (Continued)

* Use of repeated requests to recover modulus
N of the public key

— Binary search of most significant bits

— After half the bits are recovered factorization is
completed with Coppersmith’s algorithm

Note that not all of
the secret was leaked!
Just enough of the
secret was leaked to
make brute force
search feasible.

80000

@ 60000 |

n CPU cycl

ime variation
U

[
o
o
o
o

40000
20000

0+

Decryption time converges

2 4 6 8 10 12 14

of samples for a particular ciphertext

OWASP

Open Web Application
Security Project

Underhanded C Contest

 Good example of a malicious side channel
— Source has to be capable of passing a peer review
— Execution has to appear to perform the task correctly
— Challenge: Censor regions on a JPEG image, but somehow
leak the redacted information
* Snippet of winning solution:

//read the ppm header
unsigned width,height,maxdepth;
fscanf (ppm, "P3\n%u %u\n%ul\n", &width, &height, &maxdepth);

printf ("P3\n%u %u\n%u\n", width, height, maxdepth);
— Writes the magnitude of the red, green, and blue
component for each pixel in order

@) owAsp
gpun Web Application

Security Project

Underhanded C Contest (Continued)

* When we censor with a black rectangle we write 0’s for the
RGB pixel (a black pixel)

* PPM file format is flexible and implementation leaks how

many digits each value originally when it processes the file
character by character

234 2 0 83 255 255 243 255
Implementation: 000 0 0 00 000 000 0 00 000
Should write: Oo0o 0 0O 00O O

* Perfect reconstruction for black/white images, otherwise
partial reconstruction of blacked out region

UWASP
Open Web Application
Security Project

it j

Mitigations

* Unfortunately it is difficult to make software run in fixed
time.
— All sensitive program paths need to take the same time

— All sensitive program outputs need to be the same
* QOutputs include memory, file, network, etc.

* |dea: Injecting random time delays

— Random delays just increase the number of samples needed
to perform the attack

— Statistics eventually win and attacker can begin to discard
the noise

UWASP
Open Web Application
Security Projec

urity Project

Ongoing Research

Symbolic‘ Automatic
* DARPA STAC Program Execution \BiInary |
* Human-in-the-loop based £2 | instrumentation
program analysis approach to | g:';:j;’;""t e
detect Space/Time side channel u EENEERER
attacks Static
« JAnalysis ‘
* Tool for amplifying human’s Static 5o e S
program comprehension
* Challenges: T Ivirifickibn
— Analyze Java bytecode binaries Manual
— Identification of secrets ApTne Deblugeing,
— Loop complexity } Manual
— Exponential paths e
— Large frameworks/libraries '
— Mixed code environments (C/C++)
©ounsn

Security Project

Demonstration Webapp

Java Server Page (JSP) web app with MySQL database backend
Source: https://github.com/benjholla/LoginSideChannels

Secure Area

Welcome admin: admin@example.com

OLASP
Open Web Application

Security Project

LoginSideChannels Vulnerability

e The existence of users can be inferred
through timing differentials.

* More time is required to validate a password
of a valid user than an invalid user.

* Attacker does not need to know any valid

passwords and only has to guess at valid
users.

UWASP
Open Web Application
Security Project

Loop Analysis

* Approximation: Loops are
expensive and nested loops
are more expensive than [=| t com.example.loginsidechannels
non-nested loops |

[=] @ AuthUtils
* Loop Call Graph: Recovers

loops, induces call edges,

highlights calls of loops all
called within loops.
* Note: Hashes are computed s pbkdf2
in a feedback loop of N -
rounds for improved
resistance to brute force
attacks. @UMHS‘U

Open Web Application
Security Project

Loop Context

Question: Where are these loops
used and why?

Analysis: Inspect call graph to get
some context

Answer: Primarily used by two
services: authenticate user and
create user.

[=] £ org.apache.jsp.users

[authenticate_jsp ~ [-'® create_jsp

o _jspService o _jspService

[=] & kom.example{loginsideghannels

@) owAsp
Open Web Application

Security Project

ccccccccccccccccc

Find guard conditions -

if$261=
aaaaaaaaaa

Question: Is the expensive logic used
conditionally? /\

Analysis: Compute an Event Flow
Graph (EFG, a compact graph (

containing only relevant conditions). |
Inspect “authenticate_jsp” method in =
a E FG . bl
Answer: EFG reveals a conditional —

guard on the hash. Analyst clicks to
view code. Condition depends on
result of SQL query.

Control-F: Find “hash” to highlights hash logic. i3

"\
© ownse
L[_]pL:H Web Application

Security Project

- Question: Can a secret
be deduced by this
potential timing
difference?

Analysis: Follow data
flow forward from
secrets (email,
password) to
conditionals.

Observation: Password
flows to hash; email
flows into SQL.

OWARSP

n Web Application
S urity Project

Check secret confidentiality

r9 = staticinvoke <Database: Database getinstance()>();

r10 = virtualinvoke r9.<Database: Connection getConnection()>();

r11 = interfaceinvoke r10.<Connection: PreparedStatement prepareStatement(String)>(
"SELECT * FROM webdb.users where Email=? LIMIT 1");

interfaceinvoke r11.<PreparedStatement: void setString(int,String)>(1, r7);

r12 = interfaceinvoke r1l.<PreparedStatement: ResultSet executeQuery()>();

$z3 = interfaceinvoke r12.<ResultSet: boolean next()>();

if $z3 == 0 goto label06;

Sr23 = staticinvoke <AuthUtils: String hash(String,String)>(r8, r15);

Observation: The SQL query controls the condition
of interest.

Answer: Relatively expensive logic (hash) is invoked

only if email exists in the database. @UUHSU

Open Web Application
Security Project

Burp Intruder Repeater Window Help

[Target Proxy | Spider TScanner M Repeater T Sequencer T Decoder TComparer T Extender T Options | Alerts

[Target W Payloads TOptions]

o

p“.‘,' ad D HH
Confi Intruder attack 1 .nnw vad
POSitl pttack Save Columns
Attac Target TFositions TPaonads TOptions]
—| Filter: Showing all items
POS AddS |
Hos Request |Fay|oad |Status |R=lp...A|Error |Timeout|Length |Cnmm=nt |
gse 3 ben@mail.com 302 7 O 0 = Clears
CCll 2 jimmy@gmail.com 302 8 8] g 2
Acci g linda@mail.com 302 10 0 0 2 Autos|
Accy| 4 michael@mail.com 302 12 0 0o 22
Ref(| 5 amber@mail.com 302 13 0 0 = Refresh
200l 0 302 15 0 o 22 baseline request
[Con 7 obama@whitehouse. gov 302 45 O g 21
con 1 admin@example.com 302 50 O 0O 2
test@test.com 302 71 O g 21
Con
ema

Params | Headers | Hex

LLJ uJ u m ‘Type a search term ‘ 0 matches

Finished []

4
v

[B B E] ‘Type a search term | 0 matches Clear

1 payl

load position Length: 520

OWASP

Open Web Application
Security Project

— & web Portal H B _'l | '
B € | @ localhost:30s0 * €] (B Google a Q T

Login

admin@example.com

ra

Is my userbase really a secret?
...it depends...

Security Project

Side Channel Impact

ASHLEY
MADIS#N°

Life is short. Have an affair.®

Get started by telling us your relationship status:

Please Select :

See Your Matches »

anonymous members!

As seen on: Hannity, Howard Ashley Madison is the - T d
Stern, TIME, BusinessWeek, world's leading married SmSt?
Sports lllustrated, Maxim, USA dating service for ecurity
Today discreet encounters Award

Future Prediction

Currently side channel exploits are like this...

You are
vulnerable,
you just don’t
know it yet.

‘\~
\

You are already dead. \

Future Prediction

In the future side channel exploits will be like this...

!l
&) OLASP
\ i
Open Web Application
Security Projec

Some things to check...

Timing/response of REST operations
Ordering/content of

— HTTP Headers, HTTP Parameters, Cookies

Error messages

Advice: Start by considering your secrets and

an attacker’s operational budget

UWASP
Open Web Application
Security Project

| 11 L

e Ifthereis a hole in your bucket dear Henry

OWARSP

n Web Application
S eeeeee y Project

Then mend it, dear Henry.

EI IM'” y

THEN MEND IT, DEAR HENRY, DEAR HENRY, DEAR HENRY

References

[1] Children's Rhymes Video — https://www.youtube.com/watch?v=xzm9urjQbWU

[2] Ripple Carry Adder — https://en.wikipedia.org/wiki/Adder_(electronics)
[3] DARPA Paper Shredder Challenge — http://archive.darpa.mil/shredderchallenge
[4] U.S. Secret Service Printer Program — http://seeingyellow.com

[5] Blinkenlights (Chapter 5) — Michal Zalewski. 2005. Silence on the Wire: A Field Guide to Passive
Reconnaissance and Indirect Attacks. No Starch Press, San Francisco, CA, USA.

[6] Demasking Google Users with a timing attack. Andrew Cantino. 2014.

[7] OpenSSL Timing Attack — Brumley, David, and Dan Boneh. Remote timing attacks are practical.
Computer Networks 48.5 (2005): 701-716.

[8] Underhanded C Contest — http://notanumber.net/...the-leaky-redaction

OWASP
3 Open Web Application

Security Project

Recommended Reading

[1] Eliminating Timing Side-Channels. A Tutorial. Peter Schawabe. ShmooCon 2015.

[2] Side Channel Vulnerabilities on the Web - Detection and Prevention. Sebastian
Schinzel. OWASP Germany Conference 2010.

[3] Remote timing attacks are practical. Brumley, David, and Dan Boneh. Computer
Networks 48.5 (2005): 701-716.

[4] Side Channel Attacks. John Franco. University of Cincinnati Network Security
course lecture.

[5] Silence on the Wire: A Field Guide to Passive Reconnaissance and Indirect Attacks.
No Starch Press, San Francisco, CA, USA. Michal Zalewski. 2005.

[6] WebGoat Blind String SQL Injection Challenge.
https://www.owasp.org/index.php/Category:OWASP WebGoat Project

OLASP
3 gpun Web Application

Security Project

_En HENEEEEEEEEE |

 Thank you.

Slides: ben-holland.com

OWARSP

en Web Application
Security Project

