
Computing Homomorphic
Program Invariants

PhD Final Exam

11/16/2018

Ben Holland

1

A special thank you to my committee

I would not be here without each and everyone of you…

2

Background at Iowa State University

• 2005 – 2010
• B.S. in Computer Engineering

• Internship: Wabtec Railway Electronics, Ames Lab, Rockwell Collins

• 2010 – 2011
• B.S. in Computer Science

• Internship: Rockwell Collins

• 2010 – 2012
• M.S. in Computer Engineering (Co-major Information Assurance)

• Internship: MITRE

• Thesis: Enabling Open Source Intelligence (OSINT) in private social networks

• 2012 – 2015
• Research Associate → Assistant Scientist

• DARPA’s APAC and STAC programs
• Demands impactful and practical software solutions for open security problems

• Fast-paced, high-stakes, adversarial engagement challenges

• 2015 – Present
• Ph.D. in Computer Engineering

• Graduate College’s Teaching Excellence Award (2016)

• Graduate College’s Research Excellence Award (yesterday)

• December 2018
• Apogee Research

3

Background at Iowa State University

• 2005 – 2010
• B.S. in Computer Engineering
• Internship: Wabtec Railway Electronics, Ames Lab, Rockwell Collins

• 2010 – 2011
• B.S. in Computer Science
• Internship: Rockwell Collins

• 2010 – 2012
• M.S. in Computer Engineering (Co-major Information Assurance)
• Internship: MITRE
• Thesis: Enabling Open Source Intelligence (OSINT) in private social networks

• 2012 – 2015
• Research Associate → Assistant Scientist
• DARPA’s APAC and STAC programs

• Demands impactful and practical software solutions for open security problems

• Fast-paced, high-stakes, adversarial engagement challenges

• 2015 – Present
• Ph.D. in Computer Engineering

• December 2018
• Apogee Research

4

An Ambitious Goal

• Seven years spread over two multi-million dollar DARPA projects has
taken me on a journey seeking an answer to one over arching
question…
• How can we find software security anomalies in practice?

• This has been a team effort…
• Too big of a problem for a single person

• There are many aspects to this problem

• The research presented today has grown organically

5

My Research Related Activities To Date

A: First Author Papers (4)

B: Coauthor Papers (5)

C: Papers in Review (1)

D: Book Chapters (1)

E: Invited Talks (5)

F: Invited Tutorials and Seminars (11)

G: Program Analysis Tools (12)

H: Courses (1)

6

A: Papers (First Author)

A1: Benjamin Holland, Tom Deering, Suresh Kothari, Jon Mathews, Nikhil Ranade. Security Toolbox for
Detecting Novel and Sophisticated Android Malware. The 37th International Conference on Software
Engineering (ICSE 2015), Firenze, Italy, May 2015.

A2: Benjamin Holland, Ganesh Ram Santhanam, Payas Awadhutkar, and Suresh Kothari. Statically-informed
Dynamic Analysis Tools to Detect Algorithmic Complexity Vulnerabilities. The 16th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2016), Raleigh, North Carolina, October 2016.

A3: Benjamin Holland, Ganesh Ram Santhanam, Suresh Kothari. Transferring State-of-the-art Immutability
Analyses: Experimentation Toolbox and Accuracy Benchmark. The 10th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2017), Tokyo, Japan, March 2017.

A4: Benjamin Holland, Payas Awadhutkar, Suraj Kothari, Ahmed Tamrawi and Jon Mathews. COMB: Computing
Relevant Program Behaviors. The 40th International Conference on Software Engineering (ICSE 2018),
Gothenburg, Sweden, May 2018.

7

B: Papers (Coauthor)

B1: Suresh Kothari, Akshay Deepak, Ahmed Tamrawi, Benjamin Holland, Sandeep Krishnan. A “Human-in-the-
loop” Approach for Resolving Complex Software Anomalies. The 2014 IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2014), San Diego, California, October 2014.

B2: Ganesh Ram Santhanam, Benjamin Holland, Suresh Kothari, Jon Mathews. Interactive Visualization
Toolbox to Detect Sophisticated Android Malware. The 14th IEEE Symposium on Visualization for Cyber
Security (VizSec 2017), Phoenix, Arizona, October 2017.

B3: Payas Awadhutkar, Ganesh Ram Santhanam, Benjamin Holland, Suresh Kothari. Intelligence Amplifying
Loop Characterizations for Detecting Algorithmic Complexity Vulnerabilities. The 24th Asia-Pacific Software
Engineering Conference (APSEC 2017), Nanjing, China, December 2017.

B4: Ganesh Ram Santhanam, Benjamin Holland, Suresh Kothari, Nikhil Ranade. Human-on-the-loop
Automation for Detecting Software Side-Channel Vulnerabilities. The 13th International Conference on
Information System Security (ICISS 2017), Mumbai, India, December 2017.

B5: Ahmed Tamrawi, Sharwan Ram, Payas Awadhutkar, Benjamin Holland, Ganesh Ram Santhanam, Suresh
Kothari. DynaDoc: Automated On-Demand Context-Specific Documentation. Third International Workshop on
Dynamic Software Documentation (DySDoc3), Madrid, Spain, September 2018. ✩ Winner of the 2018 DOCGEN
challenge comprehensiveness category!

8

C: Papers in Review

C1: Derrick Lockwood, Benjamin Holland, Suresh Kothari. Mockingbird: A Framework for Enabling Targeted
Dynamic Analysis of Java Programs. The 41st ACM/IEEE International Conference on Software Engineering
(ICSE 2019), Montreal, Canada, May 2019.

9

D: Book Chapters

D1: Suresh Kothari, Ganesh Santhanam, Benjamin Holland, Payas Awadhutkar, and Jon Mathews, Ahmed
Tamrawi. Catastrophic Cyber-Physical Malware. Springer Verlag Publishers, April 2018.

10

E: Invited Talks

E1: Benjamin Holland, Suresh Kothari. A Bug or Malware? Catastrophic consequences either way. Derbycon
4.0, Louisville, Kentucky, September 2014.

E2: Benjamin Holland. There’s a hole in my bucket, dear Liza - Examining side channel leaks in web apps.
OWASP Ames, Ames, Iowa, August 2015.

E3: Benjamin Holland. Developing Managed Code Rootkits for the Java Runtime Environment. DEFCON 24,
Las Vegas, Nevada, August 2016.

E4: Benjamin Holland. Exploring the space in between bugs and malware. Iowa State University Cybersecurity
Seminar Series, Ames, Iowa, November 2016.

E5: Benjamin Holland. JReFrameworker: One Year Later. Derbycon 7.0, Louisville, Kentucky, September 2017.

E6: Benjamin Holland. Recent Trends in Program Analysis for Bug Hunting and Exploitation. SecDSM, Des
Moines, Iowa, September 2018.

11

F: Invited Tutorials and Seminars

F1: Suresh Kothari, Benjamin Holland. Practical Program Analysis for Discovering Android Malware. MILCOM 2015, Tampa, Florida, October 2015.

F2: Suresh Kothari, Benjamin Holland. Hard Problems at the Intersection of Cybersecurity and Software Reliability. The 26th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2015), NIST, Gaithersburg, Maryland, November 2015.

F3: Suresh Kothari, Benjamin Holland. Computer-aided Collaborative Validation of Large Software. The 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2015), Lincoln, Nebraska, November 2015.

F4: Suresh Kothari, Benjamin Holland. Learn to Build Automated Software Analysis Tools with Graph Paradigm and Interactive Visual Framework. The
31st IEEE/ACM International Conference on Automated Software Engineering (ASE 2016), Singapore, September 2016.

F5: Suresh Kothari, Benjamin Holland. Managing Complexity, Security, and Safety of Large Software. Global Initiative of Academic Networks (GIAN),
Jaipur, India, September 2016.

F6: Suresh Kothari, Benjamin Holland. Discovering Information Leakage Using Visual Program Models. MILCOM 2016, Baltimore, Maryland, November
2016.

F7: Benjamin Holland. Program Analysis for Cybersecurity. US Cyber Challenge Summer Bootcamps (USCC 2017), Illinois, Delaware, and Utah, July 2017.

F8: Suresh Kothari, Benjamin Holland. Learn to Analyze and Verify Large Software for Cybersecurity and Safety. MILCOM 2017, Baltimore, Maryland,
October 2017.

F9: Benjamin Holland. Cyber Security Awareness and Cyber Security Challenge Competition. Malaviya National Institute of Technology (MNIT), Jaipur,
India, July 2018.

F10: Benjamin Holland. Program Analysis for Cybersecurity. US Cyber Challenge Summer Bootcamps (USCC 2018), Illinois, Delaware, and Virginia,
Nevada, July 2018.

F11: Suresh Kothari, Benjamin Holland. Systematic Exploration of Critical Software for Catastrophic Cyber-Physical Malware. MILCOM 2018, Los
Angeles, California, October 2018.

12

G: Program Analysis Tools Developed

Tool Release Dates Citations Logical
LoC

LoC (Commit)
Contributions

Description

[E1] APAC Toolbox Private 2012-
2014

A1, B2 52,712 49% DARPA APAC Toolchain

[E2] Android
Essentials

Open
Source

2014-
present

A1, B2,
E1, F1

5,755 100% Android permission mappings, manifest parser,
XML UI / language / resource indexer

[E3] WAR Binary
Processing

Open
Source

2014-
present

STAC
Proposal

720 100% Java WAR (JSP webserver applications)
frontend binary support for Atlas

[E4] Toolbox
Commons

Open
Source

2015-
present

None 15,391 99% Language agnostic analysis, with extensions for
C/C++, Java, and JVM bytecode specific analysis

[E5] STAC (RULER) Private 2015-
present

B3, B4 23,652 89% DARPA STAC Toolchain

[E6]
JReFrameworker

Open
Source

2015-
present

E3, C5, F7 37,664 100% Abstracted JVM bytecode manipulation
framework with applications to JVM rootkits

[E7] Points-To
Toolbox

Open
Source

2016-
present

A3, F5 2,217 100% Precise points-to analysis, on-the-fly call graph
resolution, support for primitives and arrays.

G: Program Analysis Tools Developed (Cont.)

Tool Release Dates Citations Logical
LoC

LoC (Commit)
Contributions

Description

[E8] Call Graph
Toolbox

Open
Source

2016-
present

F5 2,535 100% 9 call graph construction algorithms (RA → CHA
→ RTA → RTA Variants → points-to), library
callback analysis for partial program analysis

[E9] Slicing
Toolbox

Open
Source

2016-
present

F5, F6, F7,
F9, F10

1,136 100% Classical program slicing with basic system
dependence graph

[E10] SIDIS
Toolbox

Open
Source

2016-
present

A2 2,476 100% Atlas to SOOT graph correspondence, bytecode
manipulation, extensible instrumentation logic

[E11]
Immutability
Toolbox

Open
Source

2016-
present

A3 13,571 99% 2 accuracy benchmarked algorithms to
compute immutability, side effect analysis, and
function purity

[E12] PCG
Toolbox (COMB)

Open
Source

2017-
present

A4 3,843 99% Implementation of Project Control Graphs with
a CHA based IPCG implementation

Personally contributed approximately eighty-five thousand lines of code publicly released under MIT license…

H: Courses

H1: Benjamin Holland. SE 421: Software Analysis and Verification for Safety and Security. Iowa State
University, Fall 2018. (introduced Spring 2018)

Previously TA’d or Co-taught 7 other semester courses

15

DARPA’s APAC Program (2012 – 2014)

• Automated Program Analysis For Cybersecurity (APAC)

• Scenario: Hardened devices, internal app store, untrusted contractors, expert
adversaries

• Focused on Android

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

Hard Lessons for a Younger Researcher

• Is a bug malware? What if its
planted intentionally? We know
bug finding is hard…

• Bugs have plausible deniability
and malicious intent cannot be
determined from code.

• Novel attacks have escaped
previous threat models.

• Need precision tools to detected
novel and sophisticated
malware in advance!

• Augmented human reasoning is
incredibly powerful and
extremely difficult to match
through automation alone.

Human-in-the-loop Approach to Detecting
Software Security Anomalies

Amplified Reasoning Technique (ART)
1. Hypothesize anomalous behaviors
2. Interactive static analysis to refine

hypothesis
3. Dynamic experimentation to validate or

refute hypothesis
4. Rinse and repeat

Papers:
• [A1] Security Toolbox for Detecting Novel and

Sophisticated Android Malware
• [B1] A “Human-in-the-loop” Approach for

Resolving Complex Software Anomalies
• [B2] Interactive Visualization Toolbox to Detect

Sophisticated Android Malware

APAC Results (2012 - 2014)

19

• Initially the only team to apply human-in-the-
loop reasoning

• Completed Phase I of the DARPA APAC program
as the top performing R&D team

• 62/77 Android source code applications
developed by the Red team contained novel
malware able to evade current automatic
detection techniques

• APAC's Phase II we ranked closely among the top
three performing R&D teams (difference of one
challenge application between top 3), who had
all adopted human-in-the-loop approaches

86%

8%

6%

ANALYSIS OF 77 APAC CHALLENGES

Correctly Identified as Malicious or Benign

Identified Unintended Malice

Missed Malware

DARPA’s STAC Program (2015 – present)

• Space/Time Analysis for Cybersecurity (STAC)

• Scenario: Detect algorithmic complexity (AC)
and side channel (SC) vulnerabilities in a
compiled bytecode applications

• Measured with respect to execution time or
volatile/non-volatile memory space and an
attacker input budget
• Example: Send 1k byte request to cause 300 sec

runtime execution

• Example: Measure the response times of 100
requests to learn private key

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ELEMENT lolz (#PCDATA)>
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

STAC Results: (2015 – present)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Phase I Phase II Start Phase II End Phase III

Analysis of 276 STAC Challenges

Attempted Accuracy

• Transitioned human-in-the-loop
approach from APAC to STAC
• [A3] Transferring State-of-the-art

Immutability Analyses: Experimentation
Toolbox and Accuracy Benchmark

• [B3] Human-on-the-loop Automation for
Detecting Software Side-Channel
Vulnerabilities

• [B4] Intelligence Amplifying Loop
Characterizations for Detecting
Algorithmic Complexity Vulnerabilities

• Remaining Challenges

Review: Program Invariants

“Programmers have invariants in mind … when they write or otherwise manipulate
programs: they have an idea of how the system works or is intended to work, how

the data structures are laid out and related to one another, and the like.
Regrettably, these notions are rarely written down...” ~ Michael Ernst

Program Invariant:
• “a property that is true at a particular program point or points” [Ernst 2000]

• “a property of a program that is always true for every possible runtime state
of the program” [MIT OpenCourseWare 6.005]

Review: Control Flow Graph

Recap of Preliminary Exam (March 2018)

• Thesis: “Computing homomorphic program invariants is novel, useful,
and practical.”
• Novelty: Homomorphic program invariants – with respect to an equivalence

class of control flow paths*

• Usefulness: Homomorphic program invariants can lead to stricter assertions

*In 1979, Tarjan introduces graph homomorphisms based on
equivalence classes of paths in a graph

Tarjan, Robert Endre. A Unified Approach to Path Problems. No. STAN-
CS-79-729. STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE, 1979.

Illustration of Stricter Assertions

What are the values of y when the true path
of the y != 0 branch is taken?

Recall: y = x % 2;
y ∈ {-1, 0, 1} for all paths
y ∈ {-1, 1} for the 4 relevant paths

… if y is -1 then division by zero will occur!

4 paths in the
control flow graph
are equivalent with
respect to whether

or not a division
operation occurs

Challenge: Path Explosion Problem

• The number of paths through
programs is astronomical

• A single function in the Linux kernel
(lustre_assert_wire_constants) has
2656 paths!
• Only 1080 atoms in the known

universe…

• 2656 ≈ 10197

26

if(condition_1){
 // code block 1
}
if(condition_2){
 // code block 2
}
if(condition_3){
 // code block 3
}
…
if(condition_n){
 // code block n
}

Condition 1

Condition 2

Condition n

false

false

false

true

true

true

…false true

2n paths!

Projected Control Graph

27

• In 2016, Tamrawi proposed a PCG abstraction
• Defined a graph homomorphism to efficiently

group program behaviors into equivalence classes

• Parameterized by control flow events of interest

• Only relevant event statements and necessary
conditions are retained CFG to PCG

Transformation

PCG Toolbox (COMB)

28

• COMB provided extensible infrastructure for applying PCG abstraction to
solve different problems

• Key Contributions
• Interactive User Interface

• Inter-procedural analysis

A4: Benjamin Holland, Payas Awadhutkar, Suraj Kothari, Ahmed Tamrawi and Jon Mathews. COMB: Computing
Relevant Program Behaviors. The 40th International Conference on Software Engineering (ICSE 2018), Gothenburg,
Sweden, May 2018.

Inter-procedural Analysis with COMB

Computing Homomorphic Program Invariants

• Thesis: “Computing homomorphic program invariants is novel, useful,
and practical.”
• Practical: Homomorphic program invariants can be computed with standard

hardware (e.g. personal computer)

Computing Homomorphic Program Invariants

Original
Program
Binary

Fuzzer
Experiment
Coordinator

Modified
Program
Binary

Static Analysis

Relevant
Crash Inputs Invariant

Detector

inputs

relevant
traces

relevant
crashes

inputs

crashes

execution trace

homomorphic invariants

program visualization

relevant events
Original
Program
Source

execution trace

31

My major contributions:
A1: Security Toolbox
A2: SID Analysis
A3: Immutability Analysis
A4: COMB
C1: Mockingbird

B1

A2 A4

C1

A1, A3, B2, B3, B4

State-of-the-art: Dynamic Invariant Detection

• Daikon: Dynamic Likely Invariant Detection
• Dynamic analysis only observes feasible paths

• Program variables are instrumented on all program paths

• BYO test input strategy, typically used with unit tests or
randomized testing

• Large collection of program invariant patterns (ex: types)

• Correctness is w.r.t. what was observed. Example: “x > 0”
may only be true if negative values were never tested.

• Can be expensive. Instrumentation adds overhead to
execution time and invariant detection must employ
many logic tricks in order to scale.

Instrumented
Program

BYO Test Inputs

Execution Traces w/
Variable Values

Invariant Detector

Likely Invariants

32

State-of-the-art: Guided Fuzzing

• American Fuzzy Lop (AFL): Guided Fuzzer
• Effective mutation strategy to generate new

inputs from initial test corpus

• Lightweight instrumentation at branch points

• Genetic algorithm promotes mutations of
inputs that discover new branch edges
• Aims to explore all code paths

• Huge trophy case of bugs found in wild
• 371+ reported bugs in 161 different programs as

of March 2018

• Responsible for a large majority of vulnerabilities
found in DARPA CGC

Traditional
(blind) Fuzzer

Program

inputs

crashes

Crash Inputs

Guided Fuzzer
Instrumented

Program

inputs

crashes

Crash Inputs

execution trace

33

Targeted Dynamic Analysis

• Decouples target code from control and
data dependencies by replacing objects
with mocked objects
• Global variables
• Method parameters passed
• Method return values

• Mocked objects have no dependencies

• Mocked object values can be
programmatically stimulated

Paper: [C1] Mockingbird: A Framework for Enabling Targeted
Dynamic Analysis of Java Programs.

Example Targeted Dynamic Analysis

Mock Specification

SIDIS Framework Architecture

Original
Program
Binary

AFL
Experiment
Coordinator

Modified
Program
Binary

Atlas + SOOT
Toolboxes +

SIDIS

Relevant
Crash Inputs

Daikon

inputs

relevant
traces

relevant
crashes

inputs

crashes

execution trace

homomorphic invariants

program visualization

relevant events
Original
Program
Source

execution trace

36

Motivating Example

• Is this program bug free?

• Could a division by zero error
occur on line 24?

• What conditions are relevant to
verifying the program?

• If the program is buggy, what
inputs are required to produce
the error?

• What input constraints must be
satisfied to produce the error?

• Is there a family of buggy inputs?

37

Program Modifications (1)

• Technique 1 - Aborting Irrelevant
Path Execution
• Only modification needed to compute

behavior-relevant invariants
• Inject an abort signal at the start of an

irrelevant path
• Insert an abort-irrelevant signal before

any statement in the CFG that is a
successor of a branch reachable from a
reverse step in the PCG from the ⊥,
omitting events

• Optionally, insert an abort-relevant
signal after events reachable in a
reverse step of the PCG from the ⊥

CFG PCG(E), E=Division Statement

Program Modifications (2)

• Technique 2 - Eliding Irrelevant Statements
• Not strictly necessary

• Improves fuzzing speed

• Program slice computes relevant control and
data flow events

• Elide irrelevant statements by injecting a pair of
goto and label statements.

• Specifically, for any edge in the PCG that is not
in the CFG add a label before the successor
node and a goto label statement after the
predecessor node.

Jump

Jump

Program Modifications (3)

• Technique 3 – Injecting Fail Early Assertions
• Not strictly necessary

• Can be used to further restrict relevance to a value at a
statement. Example assert(d!=0) before the statement
print(x / d).

• Can also be used to improve fuzzing speed by
preventing execution of relevant statements.

• Specifically, for each condition in the PCG, insert an
assert-relevant(condition) statement at the location of
the last reaching definition of the condition variables. assert (d==0)

assert(y % 2 == 0)

assert(y < 128)

40

41

42

43

Case Study: BraidIt DARPA Challenge App

• A start to finish audit…

44

Case Study: BraidIt DARPA Challenge App

• Not supposed to be vulnerable…
• But we didn’t know that…

Case Study: BraidIt DARPA Challenge App

• BraidIt is a peer-to-peer 2-player game that
tests the players' ability to recognize
topologically equivalent braids.

• BraidIt is based on the word equivalence
problem in the Artin braid group. The
application does all the dirty work, so users
need not understand the theory and can treat it
as a fun guessing game.

Case Study: BraidIt DARPA Challenge App

• Is there an algorithmic complexity vulnerability in space that would
cause the challenge program to store files with combined logical sizes
that exceed the resource usage limit given the input budget?

• Input Budget: Maximum sum of the PDU sizes of the application
requests sent from the attacker to the server: 2 kB (measured via sum
of the length fields in tcpdump)

• Resource Usage Limit: Available Logical Size: 25 MB (logical size of
output file measured with 'stat’)

• Probability of Success: 99%

Example of Hardening

Identification of an Interesting Loop

• freeNormalize and normalizeOnce each write
to log file

• normalizeCompletely is an instance method
that depends on existing program state

• The termination of normalizeCompletely
depends on the result of isReduced

• Involves loop nesting and recursion

Identification of an Interesting Loop

• isReduced reads a global variable called intersections

• freeNormalize and normalizeOnce update intersections

• intersections is a string variable that is initially attacker controlled

Hypothesis: Can there be a string that has the property of being
irreducible and therefore cause an infinite loop that writes to the file
system?

Complex String Operations

• 9 unique string operations in 62 locations
• 20 of which are within loops

• 8 unique character level operations in 60 locations
• 27 locations are within loops

Inter-procedural Control Flow Graph

isReduced

normalizeCompletely

freeNormalize

normalizeOnce

takeFollowingSection

eliminateSection

takeInverse

Relevant Paths

• What do we care about?
• The loop should not exit

• isReduced() should always return false

• If an input gets reduced then abort
immediately

Targeted Dynamic Analysis of normalizeCompletely

20 hours of directly fuzzing
normalizeCompletely…

H. Invariant: isReduced is always false

H. Invariant: intersections is always a
non-empty string

Input: “ËĎġčçęêďªã”

What does this mean?

Refined Experiment: Constrained Fuzzing

• Plait Constructor does some complex validation on intersections,
which end with the following checks
• Checks that each character is alphabetic

• Checks that each character’s lowercase character is greater than 122 +
numStrands + 2

• numStrands is attacker controlled input between 8 and 27

• Experiment: Iterate over strings of the alphabet described by
constructor
• 20 minutes to find smallest malicious inputs +13 more…

• Minimal Input: “ªªª”

Refined Experiment: Homomorphic Invariants

H. Invariant: isReduced is always false

H. Invariant: intersections is always a non-empty string

H. Invariant: intersections contains a common subsequence of a single
character ‘ª’

Refined Hypothesis: A property of the character ‘ª’ can be used to
create an irreducible string that causes an infinite loop that writes to
the file system.

Reasoning with Homomorphic Invariants

• Debug with the minimal input “ªªª” and pay attention character level
operations
• freeNormalize method removes a pair of case insensitive matching characters

where one character is the first character in the string (leaving a single
character ‘ª’ remaining)

• isReduced method can return false if the string contains an uppercase
character of a lowercase character

• Uppercase(ª) == Lowercase(ª)

• Fine scheme for ASCII, but Java Strings support Unicode UTF-16 standard
• There are 395 UTF-16 characters that alphabetic and lowercase is their uppercase

• Any could be used to craft an exploit

Conclusion

• Thesis: “Computing homomorphic program invariants is novel, useful,
and practical.”
• Novelty: Homomorphic program invariants – with respect to an equivalence

class of control flow paths

• Usefulness: Homomorphic program invariants can lead to stricter assertions
that can be used to improve program comprehension

• Practical: SIDIS framework demonstrates that homomorphic program
invariants are computable

• Observation:
• In a fuzzing based approach to computing homomorphic invariants the

computational burden can be decreased by aborting on irrelevant paths

Questions?

59

	Slide 1: Computing Homomorphic Program Invariants
	Slide 2: A special thank you to my committee
	Slide 3: Background at Iowa State University
	Slide 4: Background at Iowa State University
	Slide 5: An Ambitious Goal
	Slide 6: My Research Related Activities To Date
	Slide 7: A: Papers (First Author)
	Slide 8: B: Papers (Coauthor)
	Slide 9: C: Papers in Review
	Slide 10: D: Book Chapters
	Slide 11: E: Invited Talks
	Slide 12: F: Invited Tutorials and Seminars
	Slide 13: G: Program Analysis Tools Developed
	Slide 14: G: Program Analysis Tools Developed (Cont.)
	Slide 15: H: Courses
	Slide 16: DARPA’s APAC Program (2012 – 2014)
	Slide 17: Hard Lessons for a Younger Researcher
	Slide 18: Human-in-the-loop Approach to Detecting Software Security Anomalies
	Slide 19: APAC Results (2012 - 2014)
	Slide 20: DARPA’s STAC Program (2015 – present)
	Slide 21: STAC Results: (2015 – present)
	Slide 22: Review: Program Invariants
	Slide 23: Review: Control Flow Graph
	Slide 24: Recap of Preliminary Exam (March 2018)
	Slide 25: Illustration of Stricter Assertions
	Slide 26: Challenge: Path Explosion Problem
	Slide 27: Projected Control Graph
	Slide 28: PCG Toolbox (COMB)
	Slide 29: Inter-procedural Analysis with COMB
	Slide 30: Computing Homomorphic Program Invariants
	Slide 31: Computing Homomorphic Program Invariants
	Slide 32: State-of-the-art: Dynamic Invariant Detection
	Slide 33: State-of-the-art: Guided Fuzzing
	Slide 34: Targeted Dynamic Analysis
	Slide 35: Example Targeted Dynamic Analysis
	Slide 36: SIDIS Framework Architecture
	Slide 37: Motivating Example
	Slide 38: Program Modifications (1)
	Slide 39: Program Modifications (2)
	Slide 40: Program Modifications (3)
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Case Study: BraidIt DARPA Challenge App
	Slide 45: Case Study: BraidIt DARPA Challenge App
	Slide 46: Case Study: BraidIt DARPA Challenge App
	Slide 47: Case Study: BraidIt DARPA Challenge App
	Slide 48: Example of Hardening
	Slide 49: Identification of an Interesting Loop
	Slide 50: Identification of an Interesting Loop
	Slide 51: Complex String Operations
	Slide 52: Inter-procedural Control Flow Graph
	Slide 53: Relevant Paths
	Slide 54: Targeted Dynamic Analysis of normalizeCompletely
	Slide 55: Refined Experiment: Constrained Fuzzing
	Slide 56: Refined Experiment: Homomorphic Invariants
	Slide 57: Reasoning with Homomorphic Invariants
	Slide 58: Conclusion
	Slide 59: Questions?

