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A special thank you to my committee

I would not be here without each and everyone of you…
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Background at Iowa State University

• 2005 – 2010
• B.S. in Computer Engineering

• Internship: Wabtec Railway Electronics, Ames Lab, Rockwell Collins

• 2010 – 2011
• B.S. in Computer Science

• Internship: Rockwell Collins

• 2010 – 2012
• M.S. in Computer Engineering (Co-major Information Assurance)

• Internship: MITRE

• Thesis: Enabling Open Source Intelligence (OSINT) in private social networks

• 2012 – 2015
• Research Associate → Assistant Scientist

• DARPA’s APAC and STAC programs
• Demands impactful and practical software solutions for open security problems

• Fast-paced, high-stakes, adversarial engagement challenges

• 2015 – Present
• Ph.D. in Computer Engineering

• Graduate College’s Teaching Excellence Award (2016)

• Graduate College’s Research Excellence Award (yesterday)

• December 2018
• Apogee Research
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An Ambitious Goal

• Seven years spread over two multi-million dollar DARPA projects has 
taken me on a journey seeking an answer to one over arching 
question…
• How can we find software security anomalies in practice?

• This has been a team effort…
• Too big of a problem for a single person

• There are many aspects to this problem

• The research presented today has grown organically
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My Research Related Activities To Date

A: First Author Papers (4)

B: Coauthor Papers (5)

C: Papers in Review (1)

D: Book Chapters (1)

E: Invited Talks (5)

F: Invited Tutorials and Seminars (11)

G: Program Analysis Tools (12)

H: Courses (1)
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A: Papers (First Author)

A1: Benjamin Holland, Tom Deering, Suresh Kothari, Jon Mathews, Nikhil Ranade. Security Toolbox for 
Detecting Novel and Sophisticated Android Malware. The 37th International Conference on Software 
Engineering (ICSE 2015), Firenze, Italy, May 2015.

A2: Benjamin Holland, Ganesh Ram Santhanam, Payas Awadhutkar, and Suresh Kothari. Statically-informed 
Dynamic Analysis Tools to Detect Algorithmic Complexity Vulnerabilities. The 16th IEEE International Working 
Conference on Source Code Analysis and Manipulation (SCAM 2016), Raleigh, North Carolina, October 2016.

A3: Benjamin Holland, Ganesh Ram Santhanam, Suresh Kothari. Transferring State-of-the-art Immutability 
Analyses: Experimentation Toolbox and Accuracy Benchmark. The 10th IEEE International Conference on 
Software Testing, Verification and Validation (ICST 2017), Tokyo, Japan, March 2017.

A4: Benjamin Holland, Payas Awadhutkar, Suraj Kothari, Ahmed Tamrawi and Jon Mathews. COMB: Computing 
Relevant Program Behaviors. The 40th International Conference on Software Engineering (ICSE 2018), 
Gothenburg, Sweden, May 2018.
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B: Papers (Coauthor)

B1: Suresh Kothari, Akshay Deepak, Ahmed Tamrawi, Benjamin Holland, Sandeep Krishnan. A “Human-in-the-
loop” Approach for Resolving Complex Software Anomalies. The 2014 IEEE International Conference on 
Systems, Man, and Cybernetics (SMC 2014), San Diego, California, October 2014.

B2: Ganesh Ram Santhanam, Benjamin Holland, Suresh Kothari, Jon Mathews. Interactive Visualization 
Toolbox to Detect Sophisticated Android Malware. The 14th IEEE Symposium on Visualization for Cyber 
Security (VizSec 2017), Phoenix, Arizona, October 2017.

B3: Payas Awadhutkar, Ganesh Ram Santhanam, Benjamin Holland, Suresh Kothari. Intelligence Amplifying 
Loop Characterizations for Detecting Algorithmic Complexity Vulnerabilities. The 24th Asia-Pacific Software 
Engineering Conference (APSEC 2017), Nanjing, China, December 2017.

B4: Ganesh Ram Santhanam, Benjamin Holland, Suresh Kothari, Nikhil Ranade. Human-on-the-loop 
Automation for Detecting Software Side-Channel Vulnerabilities. The 13th International Conference on 
Information System Security (ICISS 2017), Mumbai, India, December 2017.

B5: Ahmed Tamrawi, Sharwan Ram, Payas Awadhutkar, Benjamin Holland, Ganesh Ram Santhanam, Suresh 
Kothari. DynaDoc: Automated On-Demand Context-Specific Documentation. Third International Workshop on 
Dynamic Software Documentation (DySDoc3), Madrid, Spain, September 2018. ✩ Winner of the 2018 DOCGEN 
challenge comprehensiveness category!

8



C: Papers in Review

C1: Derrick Lockwood, Benjamin Holland, Suresh Kothari. Mockingbird: A Framework for Enabling Targeted 
Dynamic Analysis of Java Programs. The 41st ACM/IEEE International Conference on Software Engineering 
(ICSE 2019), Montreal, Canada, May 2019.
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D: Book Chapters

D1: Suresh Kothari, Ganesh Santhanam, Benjamin Holland, Payas Awadhutkar, and Jon Mathews, Ahmed 
Tamrawi. Catastrophic Cyber-Physical Malware. Springer Verlag Publishers, April 2018.
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E: Invited Talks

E1: Benjamin Holland, Suresh Kothari. A Bug or Malware? Catastrophic consequences either way. Derbycon 
4.0, Louisville, Kentucky, September 2014.

E2: Benjamin Holland. There’s a hole in my bucket, dear Liza - Examining side channel leaks in web apps. 
OWASP Ames, Ames, Iowa, August 2015.

E3: Benjamin Holland. Developing Managed Code Rootkits for the Java Runtime Environment. DEFCON 24, 
Las Vegas, Nevada, August 2016.

E4: Benjamin Holland. Exploring the space in between bugs and malware. Iowa State University Cybersecurity 
Seminar Series, Ames, Iowa, November 2016.

E5: Benjamin Holland. JReFrameworker: One Year Later. Derbycon 7.0, Louisville, Kentucky, September 2017.

E6: Benjamin Holland. Recent Trends in Program Analysis for Bug Hunting and Exploitation. SecDSM, Des 
Moines, Iowa, September 2018.
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F: Invited Tutorials and Seminars

F1: Suresh Kothari, Benjamin Holland. Practical Program Analysis for Discovering Android Malware. MILCOM 2015, Tampa, Florida, October 2015.

F2: Suresh Kothari, Benjamin Holland. Hard Problems at the Intersection of Cybersecurity and Software Reliability. The 26th IEEE International 
Symposium on Software Reliability Engineering (ISSRE 2015), NIST, Gaithersburg, Maryland, November 2015.

F3: Suresh Kothari, Benjamin Holland. Computer-aided Collaborative Validation of Large Software. The 30th IEEE/ACM International Conference on 
Automated Software Engineering (ASE 2015), Lincoln, Nebraska, November 2015.

F4: Suresh Kothari, Benjamin Holland. Learn to Build Automated Software Analysis Tools with Graph Paradigm and Interactive Visual Framework. The 
31st IEEE/ACM International Conference on Automated Software Engineering (ASE 2016), Singapore, September 2016.

F5: Suresh Kothari, Benjamin Holland. Managing Complexity, Security, and Safety of Large Software. Global Initiative of Academic Networks (GIAN), 
Jaipur, India, September 2016.

F6: Suresh Kothari, Benjamin Holland. Discovering Information Leakage Using Visual Program Models. MILCOM 2016, Baltimore, Maryland, November 
2016.

F7: Benjamin Holland. Program Analysis for Cybersecurity. US Cyber Challenge Summer Bootcamps (USCC 2017), Illinois, Delaware, and Utah, July 2017.

F8: Suresh Kothari, Benjamin Holland. Learn to Analyze and Verify Large Software for Cybersecurity and Safety. MILCOM 2017, Baltimore, Maryland, 
October 2017.

F9: Benjamin Holland. Cyber Security Awareness and Cyber Security Challenge Competition. Malaviya National Institute of Technology (MNIT), Jaipur, 
India, July 2018.

F10: Benjamin Holland. Program Analysis for Cybersecurity. US Cyber Challenge Summer Bootcamps (USCC 2018), Illinois, Delaware, and Virginia, 
Nevada, July 2018.

F11: Suresh Kothari, Benjamin Holland. Systematic Exploration of Critical Software for Catastrophic Cyber-Physical Malware. MILCOM 2018, Los 
Angeles, California, October 2018.
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G: Program Analysis Tools Developed

Tool Release Dates Citations Logical 
LoC

LoC (Commit) 
Contributions

Description

[E1] APAC Toolbox Private 2012-
2014

A1, B2 52,712 49% DARPA APAC Toolchain

[E2] Android 
Essentials

Open 
Source

2014-
present

A1, B2, 
E1, F1

5,755 100% Android permission mappings, manifest parser, 
XML UI / language / resource indexer 

[E3] WAR Binary 
Processing

Open 
Source

2014-
present

STAC 
Proposal

720 100% Java WAR (JSP webserver applications) 
frontend binary support for Atlas

[E4] Toolbox 
Commons

Open 
Source

2015-
present

None 15,391 99% Language agnostic analysis, with extensions for 
C/C++, Java, and JVM bytecode specific analysis

[E5] STAC (RULER) Private 2015-
present

B3, B4 23,652 89% DARPA STAC Toolchain

[E6] 
JReFrameworker

Open 
Source

2015-
present

E3, C5, F7 37,664 100% Abstracted JVM bytecode manipulation 
framework with applications to JVM rootkits

[E7] Points-To 
Toolbox

Open 
Source

2016-
present

A3, F5 2,217 100% Precise points-to analysis, on-the-fly call graph 
resolution, support for primitives and arrays.



G: Program Analysis Tools Developed (Cont.)

Tool Release Dates Citations Logical 
LoC

LoC (Commit) 
Contributions

Description

[E8] Call Graph 
Toolbox

Open 
Source

2016-
present

F5 2,535 100% 9 call graph construction algorithms (RA → CHA 
→ RTA → RTA Variants → points-to), library 
callback analysis for partial program analysis

[E9] Slicing 
Toolbox

Open 
Source

2016-
present

F5, F6, F7, 
F9, F10

1,136 100% Classical program slicing with basic system 
dependence graph

[E10] SIDIS 
Toolbox

Open 
Source

2016-
present

A2 2,476 100% Atlas to SOOT graph correspondence, bytecode 
manipulation, extensible instrumentation logic

[E11] 
Immutability 
Toolbox

Open 
Source

2016-
present

A3 13,571 99% 2 accuracy benchmarked algorithms to 
compute immutability, side effect analysis, and 
function purity

[E12] PCG 
Toolbox (COMB)

Open 
Source

2017-
present

A4 3,843 99% Implementation of Project Control Graphs with 
a CHA based IPCG implementation

Personally contributed approximately eighty-five thousand lines of code publicly released under MIT license…



H: Courses

H1: Benjamin Holland. SE 421: Software Analysis and Verification for Safety and Security. Iowa State 
University, Fall 2018. (introduced Spring 2018)

Previously TA’d or Co-taught 7 other semester courses
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DARPA’s APAC Program (2012 – 2014)

• Automated Program Analysis For Cybersecurity (APAC)

• Scenario: Hardened devices, internal app store, untrusted contractors, expert 
adversaries

• Focused on Android

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity 

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity


Hard Lessons for a Younger Researcher

• Is a bug malware? What if its 
planted intentionally? We know 
bug finding is hard…

• Bugs have plausible deniability 
and malicious intent cannot be 
determined from code.

• Novel attacks have escaped 
previous threat models.

• Need precision tools to detected 
novel and sophisticated 
malware in advance!

• Augmented human reasoning is 
incredibly powerful and 
extremely difficult to match 
through automation alone.



Human-in-the-loop Approach to Detecting 
Software Security Anomalies

Amplified Reasoning Technique (ART)
1. Hypothesize anomalous behaviors
2. Interactive static analysis to refine 

hypothesis
3. Dynamic experimentation to validate or 

refute hypothesis
4. Rinse and repeat

Papers: 
• [A1] Security Toolbox for Detecting Novel and 

Sophisticated Android Malware
• [B1] A “Human-in-the-loop” Approach for 

Resolving Complex Software Anomalies
• [B2] Interactive Visualization Toolbox to Detect 

Sophisticated Android Malware



APAC Results (2012 - 2014)

19

• Initially the only team to apply human-in-the-
loop reasoning

• Completed Phase I of the DARPA APAC program 
as the top performing R&D team

• 62/77 Android source code applications 
developed by the Red team contained novel 
malware able to evade current automatic 
detection techniques

• APAC's Phase II we ranked closely among the top 
three performing R&D teams (difference of one 
challenge application between top 3), who had 
all adopted human-in-the-loop approaches

86%

8%

6%

ANALYSIS OF 77 APAC CHALLENGES

Correctly Identified as Malicious or Benign

Identified Unintended Malice

Missed Malware



DARPA’s STAC Program (2015 – present)

• Space/Time Analysis for Cybersecurity (STAC)

• Scenario: Detect algorithmic complexity (AC) 
and side channel (SC) vulnerabilities in a 
compiled bytecode applications

• Measured with respect to execution time or 
volatile/non-volatile memory space and an 
attacker input budget
• Example: Send 1k byte request to cause 300 sec 

runtime execution

• Example: Measure the response times of 100 
requests to learn private key

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

<?xml version="1.0"?> 
<!DOCTYPE lolz [ 
 <!ENTITY lol "lol">
 <!ELEMENT lolz (#PCDATA)> 
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;"> 
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;"> 
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;"> 
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;"> 
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;"> 
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;"> 
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;"> 
]> 
<lolz>&lol9;</lolz> 

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity


STAC Results: (2015 – present)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Phase I Phase II Start Phase II End Phase III

Analysis of 276 STAC Challenges 

Attempted Accuracy

• Transitioned human-in-the-loop 
approach from APAC to STAC
• [A3] Transferring State-of-the-art 

Immutability Analyses: Experimentation 
Toolbox and Accuracy Benchmark

• [B3] Human-on-the-loop Automation for 
Detecting Software Side-Channel 
Vulnerabilities

• [B4] Intelligence Amplifying Loop 
Characterizations for Detecting 
Algorithmic Complexity Vulnerabilities

• Remaining Challenges



Review: Program Invariants

“Programmers have invariants in mind … when they write or otherwise manipulate 
programs: they have an idea of how the system works or is intended to work, how 

the data structures are laid out and related to one another, and the like. 
Regrettably, these notions are rarely written down...” ~ Michael Ernst

Program Invariant: 
• “a property that is true at a particular program point or points” [Ernst 2000]

• “a property of a program that is always true for every possible runtime state 
of the program” [MIT OpenCourseWare 6.005]



Review: Control Flow Graph



Recap of Preliminary Exam (March 2018)

• Thesis: “Computing homomorphic program invariants is novel, useful, 
and practical.”
• Novelty: Homomorphic program invariants – with respect to an equivalence 

class of control flow paths*

• Usefulness: Homomorphic program invariants can lead to stricter assertions

*In 1979, Tarjan introduces graph homomorphisms based on 
equivalence classes of paths in a graph

Tarjan, Robert Endre. A Unified Approach to Path Problems. No. STAN-
CS-79-729. STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE, 1979.



Illustration of Stricter Assertions

What are the values of y when the true path 
of the y != 0 branch is taken?

Recall: y = x % 2;
y ∈ {-1, 0, 1} for all paths
y ∈ {-1, 1} for the 4 relevant paths

… if y is -1 then division by zero will occur!

4 paths in the 
control flow graph 
are equivalent with 
respect to whether 

or not a division 
operation occurs



Challenge: Path Explosion Problem

• The number of paths through 
programs is astronomical

• A single function in the Linux kernel 
(lustre_assert_wire_constants) has 
2656 paths!
• Only 1080 atoms in the known 

universe…

• 2656 ≈ 10197

26

if(condition_1){
    // code block 1
}
if(condition_2){
    // code block 2
}
if(condition_3){
    // code block 3
}
…
if(condition_n){
    // code block n
}

Condition 1

Condition 2

Condition n

false

false

false

true

true

true

…false true

2n paths!



Projected Control Graph

27

• In 2016, Tamrawi proposed a PCG abstraction
• Defined a graph homomorphism to efficiently 

group program behaviors into equivalence classes

• Parameterized by control flow events of interest

• Only relevant event statements and necessary 
conditions are retained CFG to PCG 

Transformation



PCG Toolbox (COMB)

28

• COMB provided extensible infrastructure for applying PCG abstraction to 
solve different problems

• Key Contributions
• Interactive User Interface

• Inter-procedural analysis

A4: Benjamin Holland, Payas Awadhutkar, Suraj Kothari, Ahmed Tamrawi and Jon Mathews. COMB: Computing 
Relevant Program Behaviors. The 40th International Conference on Software Engineering (ICSE 2018), Gothenburg, 
Sweden, May 2018.



Inter-procedural Analysis with COMB



Computing Homomorphic Program Invariants

• Thesis: “Computing homomorphic program invariants is novel, useful, 
and practical.”
• Practical: Homomorphic program invariants can be computed with standard 

hardware (e.g. personal computer)



Computing Homomorphic Program Invariants

Original 
Program 
Binary

Fuzzer
Experiment 
Coordinator

Modified 
Program 
Binary

Static Analysis

Relevant 
Crash Inputs Invariant 

Detector

inputs

relevant 
traces

relevant 
crashes

inputs

crashes

execution trace

homomorphic invariants

program visualization

relevant events
Original 
Program 
Source

execution trace

31

My major contributions:
A1: Security Toolbox
A2: SID Analysis
A3: Immutability Analysis
A4: COMB
C1: Mockingbird

B1

A2 A4

C1

A1, A3, B2, B3, B4



State-of-the-art: Dynamic Invariant Detection

• Daikon: Dynamic Likely Invariant Detection
• Dynamic analysis only observes feasible paths

• Program variables are instrumented on all program paths

• BYO test input strategy, typically used with unit tests or 
randomized testing

• Large collection of program invariant patterns (ex: types)

• Correctness is w.r.t. what was observed. Example: “x > 0” 
may only be true if negative values were never tested.

• Can be expensive. Instrumentation adds overhead to 
execution time and invariant detection must employ 
many logic tricks in order to scale.

Instrumented
Program

BYO Test Inputs

Execution Traces w/
Variable Values

Invariant Detector

Likely Invariants
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State-of-the-art: Guided Fuzzing

• American Fuzzy Lop (AFL): Guided Fuzzer
• Effective mutation strategy to generate new 

inputs from initial test corpus

• Lightweight instrumentation at branch points

• Genetic algorithm promotes mutations of 
inputs that discover new branch edges
• Aims to explore all code paths

• Huge trophy case of bugs found in wild
• 371+ reported bugs in 161 different programs as 

of March 2018

• Responsible for a large majority of vulnerabilities 
found in DARPA CGC

Traditional 
(blind) Fuzzer

Program

inputs

crashes

Crash Inputs

Guided Fuzzer
Instrumented

Program

inputs

crashes

Crash Inputs

execution trace
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Targeted Dynamic Analysis

• Decouples target code from control and 
data dependencies by replacing objects 
with mocked objects 
• Global variables
• Method parameters passed
• Method return values

• Mocked objects have no dependencies

• Mocked object values can be 
programmatically stimulated

Paper: [C1] Mockingbird: A Framework for Enabling Targeted 
Dynamic Analysis of Java Programs.



Example Targeted Dynamic Analysis

Mock Specification



SIDIS Framework Architecture

Original 
Program 
Binary

AFL
Experiment 
Coordinator

Modified 
Program 
Binary

Atlas + SOOT
Toolboxes + 

SIDIS

Relevant 
Crash Inputs

Daikon

inputs

relevant 
traces

relevant 
crashes

inputs

crashes

execution trace

homomorphic invariants

program visualization

relevant events
Original 
Program 
Source

execution trace
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Motivating Example

• Is this program bug free?

• Could a division by zero error 
occur on line 24?

• What conditions are relevant to 
verifying the program?

• If the program is buggy, what 
inputs are required to produce 
the error?

• What input constraints must be 
satisfied to produce the error? 

• Is there a family of buggy inputs?

37



Program Modifications (1)

• Technique 1 - Aborting Irrelevant 
Path Execution
• Only modification needed to compute 

behavior-relevant invariants
• Inject an abort signal at the start of an 

irrelevant path
• Insert an abort-irrelevant signal before 

any statement in the CFG that is a 
successor of a branch reachable from a 
reverse step in the PCG from the ⊥, 
omitting events

• Optionally, insert an abort-relevant 
signal after events reachable in a 
reverse step of the PCG from the ⊥

CFG PCG(E), E=Division Statement



Program Modifications (2)

• Technique 2 - Eliding Irrelevant Statements
• Not strictly necessary

• Improves fuzzing speed

• Program slice computes relevant control and 
data flow events

• Elide irrelevant statements by injecting a pair of 
goto and label statements.

• Specifically, for any edge in the PCG that is not 
in the CFG add a label before the successor 
node and a goto label statement after the 
predecessor node.

Jump

Jump



Program Modifications (3)

• Technique 3 – Injecting Fail Early Assertions
• Not strictly necessary

• Can be used to further restrict relevance to a value at a 
statement. Example assert(d!=0) before the statement  
print(x / d).

• Can also be used to improve fuzzing speed by 
preventing execution of relevant statements.

• Specifically, for each condition in the PCG, insert an 
assert-relevant(condition) statement at the location of 
the last reaching definition of the condition variables. assert (d==0)

assert(y % 2 == 0)

assert(y < 128)

40
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Case Study: BraidIt DARPA Challenge App

• A start to finish audit…

44



Case Study: BraidIt DARPA Challenge App

• Not supposed to be vulnerable…
• But we didn’t know that…



Case Study: BraidIt DARPA Challenge App

• BraidIt is a peer-to-peer 2-player game that 
tests the players' ability to recognize 
topologically equivalent braids. 

• BraidIt is based on the word equivalence 
problem in the Artin braid group. The 
application does all the dirty work, so users 
need not understand the theory and can treat it 
as a fun guessing game.



Case Study: BraidIt DARPA Challenge App

• Is there an algorithmic complexity vulnerability in space that would 
cause the challenge program to store files with combined logical sizes 
that exceed the resource usage limit given the input budget?

• Input Budget: Maximum sum of the PDU sizes of the application 
requests sent from the attacker to the server: 2 kB (measured via sum 
of the length fields in tcpdump) 

• Resource Usage Limit: Available Logical Size: 25 MB (logical size of 
output file measured with 'stat’) 

• Probability of Success: 99%



Example of Hardening



Identification of an Interesting Loop

• freeNormalize and normalizeOnce each write 
to log file

• normalizeCompletely is an instance method 
that depends on existing program state

• The termination of normalizeCompletely 
depends on the result of isReduced

• Involves loop nesting and recursion



Identification of an Interesting Loop

• isReduced reads a global variable called intersections

• freeNormalize and normalizeOnce update intersections

• intersections is a string variable that is initially attacker controlled

Hypothesis: Can there be a string that has the property of being 
irreducible and therefore cause an infinite loop that writes to the file 
system?



Complex String Operations

• 9 unique string operations in 62 locations
• 20 of which are within loops 

• 8 unique character level operations in 60 locations
• 27 locations are within loops



Inter-procedural Control Flow Graph

isReduced

normalizeCompletely

freeNormalize

normalizeOnce

takeFollowingSection

eliminateSection

takeInverse



Relevant Paths

• What do we care about?
• The loop should not exit

• isReduced() should always return false

• If an input gets reduced then abort 
immediately



Targeted Dynamic Analysis of normalizeCompletely

20 hours of directly fuzzing 
normalizeCompletely…

H. Invariant: isReduced is always false

H. Invariant: intersections is always a 
non-empty string

Input: “ËĎġčçęêďªã”

What does this mean?



Refined Experiment: Constrained Fuzzing

• Plait Constructor does some complex validation on intersections, 
which end with the following checks
• Checks that each character is alphabetic

• Checks that each character’s lowercase character is greater than 122 + 
numStrands + 2

• numStrands is attacker controlled input between 8 and 27

• Experiment: Iterate over strings of the alphabet described by 
constructor
• 20 minutes to find smallest malicious inputs +13 more…

• Minimal Input: “ªªª” 



Refined Experiment: Homomorphic Invariants

H. Invariant: isReduced is always false

H. Invariant: intersections is always a non-empty string

H. Invariant: intersections contains a common subsequence of a single 
character ‘ª’

Refined Hypothesis: A property of the character ‘ª’ can be used to 
create an irreducible string that causes an infinite loop that writes to 
the file system.



Reasoning with Homomorphic Invariants

• Debug with the minimal input “ªªª” and pay attention character level 
operations
• freeNormalize method removes a pair of case insensitive matching characters 

where one character is the first character in the string (leaving a single 
character ‘ª’ remaining)

• isReduced method can return false if the string contains an uppercase 
character of a lowercase character

• Uppercase(ª) == Lowercase(ª) 

• Fine scheme for ASCII, but Java Strings support Unicode UTF-16 standard
• There are 395 UTF-16 characters that alphabetic and lowercase is their uppercase

• Any could be used to craft an exploit



Conclusion

• Thesis: “Computing homomorphic program invariants is novel, useful, 
and practical.”
• Novelty: Homomorphic program invariants – with respect to an equivalence 

class of control flow paths

• Usefulness: Homomorphic program invariants can lead to stricter assertions 
that can be used to improve program comprehension

• Practical: SIDIS framework demonstrates that homomorphic program 
invariants are computable

• Observation: 
• In a fuzzing based approach to computing homomorphic invariants the 

computational burden can be decreased by aborting on irrelevant paths



Questions?
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