IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

learn invent impact

Statically-informed Dynamic Analysis Tools to Detect
Algorithmic Complexity Vulnerabilities

16th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM 2016)
October 2, 2016

Benjamin Holland, Ganesh Ram Santhanam, Payas Awadhutkar, and Suresh Kothari
Email: {bholland, gsanthan, payas, kothari}@iastate.edu

Acknowledgement. Team members at lowa State University and EnSoft, DARPA contracts FA8750-12-2-0126 & FA8750-15-2-0080
IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Motivation

o DARPA Space/Time Analysis for Cybersecurity (STAC) program
Given a compiled Java bytecode program

Discover Algorithmic Complexity (AC) vulnerabilities

<?xml version="1.0"?>

<IDOCTYPE lolz [

<IENTITY lol "lol">

<IELEMENT lolz (#PCDATA)>

<IENTITY lol1 "&lol;&lol;&lol;&lol;&lol; &lol; &lol; &lol; &lol; &lol;">

<IENTITY lol2 "&lol1;&lol1;&I0l1;&lol1;&l0l1;&Iol1;&l0l1;&I0l1;&l0l1;&I0l1;">
XML Parser <IENTITY lol3 "&lol2;&l0l2;&l0l2;&l0l2;&I012;&I012;&l012;&l012;&I012;&I012;">

<IENTITY lol7 "&lol6;&l016;&1016;&l016;&I016;&I016;&l016;&1016;&I016;&I016;">
<IENTITY lol8 "&Ilol7;&lol7;&l0l17;&l0l7;&l0l7;&l0l7;&lol7;&lol7;&l0l7;&I017;">
<IENTITY lol9 "&lol8;&l0l8;&I018;&1018;&I018;&|0l8;&I0l8;&1018;&I018;&l0l8;">
1>

<lolz>&lol9;</lolz>

Parsing a specially crafted input file of less than a kilobyte creates a string of 10°
concatenated “lol” strings requiring approximately 3 gigabytes of memory.

IOWA STATE UNWERSITY learn invent impact

Department of Electrical and Computer Engineering

Motivation

o DARPA Space/Time Analysis for Cybersecurity (STAC) program
Given a compiled Java bytecode program
Discover Algorithmic Complexity (AC) vulnerabilities

Vulnerabilities are defined with respect to a budget

Example: Max input size 1kb, execution time exceeds 300s on a given reference
platform

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Overview

o Approach
o Static and Dynamic Analysis Tools

o Static loop analysis

o Instrumentation and dynamic analysis

o Case Study
o Walkthrough analysis

o Q/A

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Approach

o Algorithmic complexity (AC) vulnerabilities are rooted in the space and time
complexities of externally-controlled execution paths with loops.

Existing tools for computing the loop complexity are limited and cannot prove
termination for several classes of loops.

At the extreme, a completely automated detection of AC vulnerabilities amounts to
solving the intractable halting problem.

o Key ldea: Combine human intelligence with static and dynamic analysis to
achieve scalability and accuracy.

A lightweight static analysis is used for a scalable exploration of loops in bytecode

from large software, and an analyst selects a small subset of these loops for further
evaluation using a dynamic analysis for accuracy.

IOWA STATE UNIVERSITY

learn invent impact
Department of Electrical and Computer Engineering

Vulnerability Detection Process

1. Automated Exploration: |dentify loops, pre-compute their crucial attributes
such as intra- and inter-procedural nesting structures and depths, and
termination conditions.

2. Hypothesis Generation: Through an interactive inspection of the pre-
computed information the analyst hypothesizes plausible AC vulnerabilities
and selects candidate loops for further examination using dynamic analysis.

3. Hypothesis Validation: The analyst inserts probes and creates a driver to
exercise the program by feeding workloads to measure resource

consumption for the selected loops.

IOWA STATE UNNERSITY learn invent impact

Department of Electrical and Computer Engineering

Statically-informed Dynamic Analysis (SID) Tools

o Loop Call Graph (LCG)

Recovers loop headers in bytecode using the DLI algorithm [Wei SAS 2007]

Combines call relationships to produce a compact visual model to explore intra- and
inter-procedural nesting structures of loops.

Constructed statically, interactive, expandable, corresponds to source

o Time Complexity Analyzer (TCA)

A dynamic analyzer that enables the analyst to automatically instrument the
selected loops with resource usage probes

Skeleton driver generation

Linear regression to estimate complexity

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Loop Call Graph

[=]= org jgrapht_jimple

EJ[;B;q:(jljgf:::/::Jt:ll([:-;esMinimaIWeightBipartitePen‘ectMatching v N Od es :
- Methods containing loops (blue)
- Methods reaching methods

B © KuhnMunkresMatriximplementation

<+ buildMatching call

extendEqualityGraph ’ CO ntaining |OO pS (White)
S — - Edges:
= - Call relationships
- Color attributes to show

placement of call site in loop

Called Inside Loop
—> Called Outside Loop

IOWA STATE UNNERSITY learn invent impact

Department of Electrical and Computer Engineering

Control Flow Loop View

[=]¢ java.util

EEC-)TimSort
o Loop levelsareshaded
darker for each nesting - onansor - comtunnataerscendns I

call

= reverseRange

level

$20 = <TimSort: boolean $assertionsDisabIed>J

o ifs01=0
goto labell;

o Branch condition =
coloring

7 fi2>=0
goto labell;

Red is false

P call ,
: ‘Iabell;

\sro = new iava.lang.AssertionErrorj 3=0:

‘specialinvoke $r0.<java.lang.AssertionError: void <init>()>();] goto Iabela;l

|

r - label3:
throw $r0; - | if i2 >= 32 goto label2;

‘ label2:
$i0=i2&1;

o Loop back edgeisgrey

o Unconditional is black

Green is true 5 :

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Interactive Graph Models — Traditional Call Graph

i BN # @GP 4 BB % -0"Q@ &6 & &~ S v Quick Access
= |) URIVerifierjava |4 NanoHTTPD.java X ™l Graphs = B W call:Atlas Smart View % %N E e @ @ £ 4 |§ = O .
256 @eprecated o
257 public Response serve(String uri, Method method, Map<String, String> headers, Map<String, Strin L
258 return newFixedLengthResponse(NanoHTTPD.Response.Status.NOT_FOUND, "text/plain”, "Not Found @
8 259 }
260 @
&) 261= public void setAsyncRunner(AsyncRunner asyncRunner) {)
262 this.asyncRunner = asyncRunner; a/
263 }
264
265¢ public void setTempFileManagerFactory(TempFileManagerFactory tempFileManagerFactory) { o
266 this.tempFileManagerFactory = tempFileManagerFactory; g
w3 O-Level Call graph -
268
269= public void start() throws IOException { (|
270 start(5000);
271 } »
...... 272 Q]
273e public void start(int timeout) throws IOException { -
274 if (this.sslServerSocketFactory != null) {
275 SSLServerSocket ss = (SSLServerSocket) this.sslServerSocketFactory.createServerSocket() [=]& rt.jar
276 ss.setNeedClientAuth(false);
277 this.myServerSocket = ss; = [=] & java.lang
278 } else {
279 this.myServerSocket = new ServerSocket(); + [=]® Thread
280 } 0
281 this.myServerSocket.setReuseAddress(true); - i
282 . !
283 ServerRunnable serverRunnable = createServerRunnable(timeout); - V
284 this.myThread = new Thread(serverRunnable); o ® Sta'tl
285 this.myThread.setDaemon(true); + i
this.myThread.setName("NanoHttpd Main Listener"); |
this.myThread. &) ; - v
while ((!serverRunnable.hasBinded) && (serverRunnable.bindException == null)) {
289 try {
290 Thread.sleep(16L);
291 } catch (Throwable localThrowable) {
292 }
293 }
294
295 if (serverRunnable.bindException != null)
296 throw serverRunnable.bindException;
L 297 }
298
2992 public void stop() {
300 try {
301 safeClose(this.myServerSocket);
302 this.asyncRunner.closeAll();
303 if (this.myThread != null)
304 this.myThread.join();
305 } catch (Exception e) { w« ”
306 LOG.log(Level .SEVERE, "Could not stop all connections"”, e); H
) ‘ g Call Graph “smart view
308 }
309
2102 nuhlic final hnnlean wasStarted() { dbs
Writable Smart Insert 287:28 ‘ 20M of 38M

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Interactive Graph Models — Traditional Call Graph

i = B -G C AR © g -SRI > IR R B =R SR v &Gy v Quick Access
1) NanoHTTPD.java & = B ™ call:Atlas Smart View 2 S WE Qe Ly (G =0 -
256 @Deprecated o
257 public Response serve(String uri, Method method, Map<String, String> headers, Map<String, Strin L
258 return newFixedLengthResponse(NanoHTTPD.Response.Status.NOT_FOUND, "text/plain”, "Not Founc @
= 259 }
260 @
5] 261= public void setAsyncRunner(AsyncRunner asyncRunner) { 5
262 this.asyncRunner = asyncRunner; o
263 }
264
265¢ public void setTempFileManagerFactory(TempFileManagerFactory tempFileManagerFactory) {
266 this.tempFileManagerFactory = tempFileManagerFactory; g
0 Complete Call Graph -
268
269= public void start() throws IOException { |
270 start(5000);
271 } »
272 o)
273e public void start(int timeout) throws IOException { -
274 if (this.sslServerSocketFactory != null) {
275 SSLServerSocket ss = (SSLServerSocket) this.sslServerSocketFactory.createServerSocket()
276 ss.setNeedClientAuth(false);
277 this.myServerSocket = ss; =
278 } else { = 11 n
279 this.myServerSocket = new ServerSocket(); + i
280 } I -
281 this.myServerSocket.setReuseAddress(true); - T T H]
282 . I - 2 ——
283 ServerRunnable serverRunnable = createServerRunnable(timeout); - — 1
284 this.myThread = new Thread(serverRunnable); = T =
285 this.myThread.setDaemon(true); + -
286 this.myThread.setName("NanoHttpd Main Listener"); — . 3 — - -
287 this.myThread. 5&lmi() ; =] ' '
288 while ((!serverRunnable.hasBinded) && (serverRunnable.bindException == null)) {
289 try {
290 Thread.sleep(16L);
291 } catch (Throwable localThrowable) {
292 }
293 }
294
295 if (serverRunnable.bindException != null)
296 throw serverRunnable.bindException;
297 }
298
2999 public void stop() {
300 try {
301 safeClose(this.myServerSocket);
302 this.asyncRunner.closeAll();
303 if (this.myThread != null)
304 this.myThread.join();
305 } catch (Exception e) { w« ”
306 LOG.log(Level .SEVERE, "Could not stop all connections”, e); H
) ‘ g Call Graph “smart view
308 }
309
2102 nuhlic final hnanlean wasStarted() { dbs

19M of 38M

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Interactive Graph Models — Loop Call Graph (Expandable)

Quick Access Quick Access
™ Loop Call Graph (LCG): Atlas Smart View 5 & W e a] e Py (g =0 |, ™ Loop Call Graph (LCG): Atlas Smart View &2 & Weaae Ly (§=080|,
5 5
@ @
4 $
ey =
[=) rt.jar - -0 javalang =
=4 java.lang [o s
= @ Thread
- -
y
= O
» & Blogger_src »
- B ki sonen
[= = Blogger_src OJ - 13 NanaHTTPD ; QT
= 4 fiki.clonen -@
[~ NanoHTTPD ey
=G ClierfHandler) b
= =
as expandable
+ +
1 1
— [= & HTTPSession -
- .
2 can 3
T
{2 Resporse
= x
—

all

+ sendBodyWihCorrect TransterAndEncodnglil = ok ooty

[~ SimpleW ebServer

Loop Call Graph “smart view”

Loop Call Grap v atlas Loop Call Grap ¥ atlas

21M of 38M 21M of 39M

IOWA STATE UNNERSITY learn invent impact

Department of Electrical and Computer Engineering

Interactive Graph Models — Loop Call Graph

Quick Access
M Loop Call Graph (LCG): Atlas Smart View 22 & W e Qe fua (€= 0

sual
-1 Thesaa

[-] B

ger e A:);‘

= g

_____ - —

&

L |

(|

»

o)

.
- N

NV

{&@* — — =Vulnerability

.|.-,; n
- @ it paciage) - Baachanele
-Gt _owie - GEfmele oM

Loop Call Grap v atlas

21M of 39M

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Time Complexity Analyzer

o Analyst picks entry point in the app using Loop Call
Graph (LCG) view

WiGraph1 WHGrmph2 (o) fiikielonenURNerifierjimple 1) CounterDriverjava 03 = O | W Loop Call Graph (LCG): Atlas Smart View 53 £ENVEQQQ LG G=0O

LCG: Induced subgraph of reachable methods
that contain loops

4 JSTAC 1-2.2.0-SNAPSHOT-jar-with-dependencies jar

tion { [=] & filki elonen

[=]® JavaWebServerPlugin

o Analyst selects methods from the LCG view to
instrument

Probe choices: Iteration counters & Wall clock
timers

o X

2 Time Complesity Analyzer

Counter Workload Profile, R2=0.87

o Automatic probe insertion into Jimple & reassembly
into bytecode

[
)
y=4.06"x + 0.55,

Log(Measurern

lcc atlas
. . . 8 Con . HeEE v -n -0
o Automatic driver skeleton generation
Analyst fills in the driver with code that provides
test input) -

o Automatic plot of the collected measurements for the
given test input

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

TCA Instrumentation

o Iteration Counters
Tracks the number of times a loop header is executed

Platform independent, repeatable
o Wall Clock Timers

Uses timestamps to measure the cumulative time spentin a loop

More prone to noisy and inaccuracy, but still useful

Consider: caching or garbage collection side effects on the runtime

o Probes are inserted after selected loop headers

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Driver Generation

[a—

public class CounterDriver {
private static final int TOTAL_WORK_TASKS = 30;
public static void main(String[] args) throws

: Exception {

o Generates driver for(int i=1; i<=TOTAL_WORK_TASKS; i++){

w N

4
“skeleton” with 5 RULER_Counter.setSize(1);
llsi 6 URIVerifier verifier = new URIVerifier();
callsites to target 7 verifier.verify(getWorkload(i));
methods 8} .
9 tca.TCA.plotRegression(
o Workload is provided 10 "URIVerifier.verify Workload Profile",
11 TOTAL_WORK_TASKS) ;
by the user b}
13 private static String getWorkload(int size){
yVoHdoadsbcqurnap) String unit = "a";
inputs to a “workload s StringBuilder result = new StringBuilder();
size” 16 for(int i=0; i<size; i++){
17 result.append(unit);
18
19 return result.toString();
20 }

IOWA STATE UNNERSITY learn invent impact

Department of Electrical and Computer Engineering

Complexity Analysis

o Plots results on a log-log scale

Linear vs. Binary Insertion Sort Performance on Random Data

o Linear regression to fit

30
measurements linear, slope = 1.83, R2 = 0.99 — *
5 __ 25 [binary, slope = 1.23,R2=0.99 7
o R“errorvalue [)
-
o Aslope of mon the log-log plot 3 15 i
indicates the measured empirical 2 1 |

complexity of n™.

o U

o 2 4 6 8 10 12 14 16
o Potential use in education for log(input size)

comparing empirical complexities
of two algorithms

IOWA STATE UNNERSITY learn invent impact

Department of Electrical and Computer Engineering

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Walkthrough of Blogger

www.ece.iastate.edu learn invent impact

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Blogger Walkthrough/Workflow

Analyst Goal
— Find most expensive loops reachable in the app
— Verify if they violate resource consumption limit within the budget

Demo: SID tools used to find AC vulnerability

— Loop Call Graph: Find loops reachable from points of interest

— Smart Views: On-demand composable analysis

— Time Complexity Analyzer: Measure runtime performance of
loops for inputs within budget

19

www.ece.iastate.edu learn invent impact

Blogger > How we found the AC vulnerability

1. Follow call graphs from entry point to code that serves client requests
— Call graph from JavaWebServer.main() is too large
— Notice that JDK APIs are used to start Threads
— Look at reverse call graph from Thread.start() to see what threads are started
2. ldentify use of threads in application server design
— ServerRunnable is listener thread
— ClientHandler is request processor thread
3. ldentify loops reachable from ClientHandler using LCG
— Narrow down scope of vulnerability to 25 of the 422 methods
4. Formulate & Validate Hypothesis

— Run dynamic analysis informed by LCG to find method causing vulnerability

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

www.ece.iastate.edu learn invent impact

Step 1 — Locate use of Threads

Zooming into leaves of call graph from
JavaWebServer.main() shows JDK APIs are | =]
used to start Threads i i i

NanoHTTPD is a threaded web server. b f f

i [‘o join] {Fo setName] [stleepj [‘o setDaemonJ

Q. Where are threads started in the app? Which threads handle client requests?

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

www.ece.iastate.edu learn invent impact

Step 2 — ClientHandler Thread Handlers HTTP requests

ClientHandler handles client requests
public class ClientHandler implements Runnable {

@Override
Forward call graph from cClientHandler.run() is public void run() {
grap () // Server thread that handles client request
still large: 483 nodes, 1135 edges O“tp“‘{:s”ea"‘ outputStream = null;
try Cs

HTTPSession session = new HTTPSession(...);

while (!this.acceptSocket.isClosed())
session.execute();

} catch (Exception e) {...}

finally {...}

Q. What loops in the app are reachable from ciientHandler.run()?

IOWA STATE UNIVERSITY

WWW.ece.iastate.edu

Department of Electrical and Computer Engineering

Step 3 — Loop Call Graph
B

Significantly more compact view than the

original call graph
- 79 nodes, 150 edges in LCG from ClientHandler.run

- 41 loops reached from ClientHandler.run

- Compared to 483 nodes, 1135 edges in the call graph SF
- Focuses analyst attention on loops, ’Emﬂ |
while preserving call reachability r == \;‘
- Includes the vulnerability - URIVerifier.verify() T T
Analyst wants to find “interesting” methods to inspect ﬂ:

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

WWW.ece.iastate.edu

Step 4 — Dynamic Analysis Informed by LCG

1. Analyst uses TCA to probe each of the 41 loops using Iteration
Counter instrument

2. TCA compiles, runs instrumented jar
(Instrumented Blogger server is started)

3. Once server is started, analyst interacts with the application
using a web browser

4. TCA records the number of iterations for each loop execution

IOWA STATE UNIVERSITY

WWW.ece.iastate.edu

Department of Electrical and Computer Engineering

Step 4 — Dynamic Analysis Informed by LCG

Analyst issues 3 sample URLs to server
((/II
lt/testu

“/stac/example/Example” /

Instrumented server counts and saves
iterations for each loop exercised

2 methods record large iteration counts
- HTTPSession.findHeaderEnd()
- URIVerifier.verify()

Method Name

Iterations

NanoHTTPD.HTTPSession.findHeaderEnd.label 1

URI Verifier.verify.label5

URI Verifier.verify.label3

URI Verifier.verify.label l

URIVerifier.URIVerifier.label5
URIVerifier.URIVerifier.label
NanoHTTPD.HTTPSession.decodeHeader. Trap Region.label10
NanoHTTPD.Response.headerAlreadySent.label 1
NanoHTTPD.CookieHandler.CookieHandler.label
NanoHTTPD.Response.sendBody.label3
NanoHTTPD.HTTPSession.decodeParms.label2
NanoHTTPD.ClientHandler.run.Trap Region.label2
NanoHTTPD.Response.send. Trap Region.label6
NanoHTTPD.CookieHandler.unloadQueue.label 1
NanoHTTPD.Response.getHeader.label 1
NanoHTTPD.HTTPSession.execute. Trap Region.label6
NanoHTTPD.DefaultTempFileManager.clear.label |
NanoHTTPD.Method.lookup.label
NanoHTTPD.ServerRunnable.run.Trap Region.label6
NanoHTTPD .start.label3

270
190
100

IOWA STATE UNIVERSITY

WWW.ece.iastate.edu

Department of Electrical and Computer Engineering

Step 4 — Dynamic Analysis Informed by LCG

private int findHeaderEnd(byte[] buf, int rlen) {
int splitbyte = 0;
while (splitbyte + 3 < rlen) {

if ((buf[splitbyte] == 13) && (buf[(splitbyte + 1)] == 10) &% (buf[(splitbyte + 2)] == 13) && (buf[(splitbyte + 3)] == 10)) {
return splitbyte + 4;

}
splitbyte++;
}
return @;

* Single loop
* Single termination condition

 Loop induction variable splitbyte:
— Modified in one location inside the loop body

— Monotonically increases up to termination condition

www.ece.iastate.edu IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Step 4 — Dynamic Analysis Informed by LCG

public boolean verify(String string) {
Tuple peek;
LinkedList<Tuple> tuples = new LinkedList<Tuple>();
tuples.push(new Tuple<Integer, URIElement>(®, this.verifierElements));
while (!tuples.isEmpty() && (peek = (Tuple)tuples.pop()) != null) {
if (((URIElement)peek.second).isFinal && ((Integer)peek.first).intValue() == string.length()) {
return true;
}
if (string.length() > (Integer)peek.first) {
for (URIElement URIElement2 : ((URIElement)peek.second).get(string.charAt((Integer)peek.first))) {
tuples.push(new Tuple<Integer, URIElement>((Integer)peek.first + 1, URIElement2));

}

}
for (URIElement child : ((URIElement)peek.second).get(-1)) {

tuples.push(new Tuple(peek.first, child));

}
}

return false;

* 3loops
* Logic behind push and pop on loop induction variable tuples is unclear
* Analyst decides to instrument URIVerifier.verify() separately

IOWA STATE UNIVERSITY

WWW.ece.iastate.edu

Department of Electrical and Computer Engineering

Step 4 — Dynamic Analysis Informed by LCG

Analyst uses TCA to instrument URIVerifier.verify() with iteration counter
Driver to test the method with URL strings of increasing length:

public class CounterDriver {
private static final int TOTAL_WORK TASKS = 30;

public static void main(String[] args) throws Exception {
for(int i=1; i<=TOTAL _WORK TASKS; i++){
RULER Counter.setSize(1i);
URIVerifier verifier = new URIVerifier();
verifier.verify(getWorkload(1i));
}
tca.TCA.plotRegression("URIVerifier.verify Workload Profile", TOTAL_WORK _TASKS);

}

private static String getWorkload(int size){
String unit = "a";
StringBuilder result = new StringBuilder();
for(int i=0; i<size; i++){
result.append(unit);
}

return result.toString();

IOWA STATE UNIVERSITY

WWW.ece.iastate.edu

Department of Electrical and Computer Engineering

Step 4 — Dynamic Analysis Informed by LCG

TCA produces a plot of # iterations in URIVerifier.verify() vs. URL string length

Analyst confirms URIVerifier.verify() exceeds budgeted time of 300 seconds
for URL strings of length > 35

URIVerifier.verify Workload Profile, R2=0.86

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Log(Workload Size)

| ® Measu rementsl

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

WWW.ece.iastate.edu

Tools

o SID Tools: https://ensoftcorp.eithub.io/SID/
Eclipse Plugin

Open Source, MIT License

Video Demo

o Atlas
Supports C/Java/JVM Bytecode (Jimple IR)
Free for academic use/open source projects

http://www.ensoftcorp.com/atlas/

o Soot
Bytecode to Jimple transformation
- https://sable.github.io/soot/

IOWA STATE UNIVERSITY

learn invent impact

Department of Electrical and Computer Engineering

Future Work

o Better heuristics to guide analyst to problem areas
Loops with complex termination conditions

Non-monotonic loops

o Thinking hard about input generation

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

Thank you.

o Questions?

IOWA STATE UNIVERSITY learn invent impact

Department of Electrical and Computer Engineering

