
Thinking on Uses of Dynamic
Analysis for Software Security

ben-holland.com

$ whoami
• 2005 – 2010

• B.S. in Computer Engineering
• Wabtec Railway Electronics, Ames Lab (DOE), Rockwell Collins: Software Engineer Intern

• 2010 – 2011
• B.S. in Computer Science
• Rockwell Collins: Software Engineer Intern

• 2010 – 2012
• M.S. in Computer Engineering (Co-major Information Assurance)
• Thesis: Enabling Open Source Intelligence (OSINT) in private social networks
• MITRE: Software Engineer Intern

• 2012 – 2015
• Iowa State University: Research Associate → Assistant Scientist
• DARPA’s APAC and STAC programs

• Demands impactful and practical software solutions for open security problems

• Fast-paced, high-stakes, adversarial engagement challenges

• 2015 – 2018
• Ph.D. in Computer Engineering (Iowa State University)

• 2019 – Present
• Apogee Research: Senior Research Engineer
• We are hiring! Online at: apogee-research.com

Disclaimer

• Nobody is endorsing me to say any of the things I am about to say

• I am not representing my employer (but we are hiring!)

• What I am going to say is my opinion and may be controversial among
experts

• I am somewhat unavoidably biased towards certain approaches

• I’ll probably ask more questions than I have answers

• I’ll probably even get a few things wrong…

Overview

• What is a program?

• Why do we need program analysis?

• What is dynamic analysis?

• What is the state-of-the-art dynamic analysis?

• How can we do better?

What is a program?

Ice Breaker Exercise: EIL5 “Programming”

• Explain It Like I’m Five (EIL5): What is a computer program?

• Can your explanation intuitively address:
• What is a program

• What are the inputs and outputs

• Complexity of software

• Programming bugs

• Security issues

What is a program?

• Common answer: “a set of instructions”
• Better answer: “similar to a cooking recipe”

• Ordered list of instructions
• Instructions executable by a cook (i.e. the computer)
• Instructions specify operators (actions) and operands (data)

• Example: “add flour to bowl”
• Operator: add
• Operands: flour, bowl

• Instructions can be branching or non-branching
• Non branching: “add flour to bowl”
• Branching: if “large batch” then “add flour to bowl”

• Instructions can be repeated (i.e. loop)
• Example: jump to first instruction
• Example: while “batter is runny” then “stir batter”

We can visualize programs as flow charts

What is a program?

• Even better answer: Something that can be translated to a set of low
level instructions (e.g. Brainf*ck) that control a Turing machine
• Program: Series of BF instructions

• Input: Contents on tape

• Output: Contents on tape Instruction Meaning

> increment the data pointer (to point to the next cell to the right)

< decrement the data pointer (to point to the next cell to the left)

+ increment (increase by one) the byte at the data pointer

- decrement (decrease by one) the byte at the data pointer

[
if the byte at the data pointer is zero, then instead of moving the instruction pointer forward
to the next command, jump it forward to the command after the matching] command

]
if the byte at the data pointer is nonzero, then instead of moving the instruction pointer
forward to the next command, jump it back to the command after the matching [command

+[-[<<[+[--->]-
[<<<]]]>>>-]>-

What is a program?

• Even better answer: Something that can be translated to a set of low
level instructions (e.g. Brainf*ck) that control a Turing machine

Brainf*ck
Program

Turing
Machine

C
Compiler

C
Program

x86 interpreter implemented exactly 100 bytes
https://github.com/peterferrie/brainfuck

C to Brainf*ck Compiler
• https://github.com/arthaud/c2bf
• https://www.codeproject.com/Article

s/558979/BrainFix-the-language-that-
translates-to-fluent-Br

https://github.com/peterferrie/brainfuck
https://github.com/arthaud/c2bf
https://www.codeproject.com/Articles/558979/BrainFix-the-language-that-translates-to-fluent-Br

Why do we need program analysis?

Why do we need program analysis?

• While humans are currently writing software for machines, it is
hopeless for humans alone to audit software at scale
• Programs have a staggering amount of complexity

• We have a lot of programs

• Programs are changing at a ridiculous pace

• Programs are infested with bugs that can last years

• We still haven’t learned how to write correct software

Programs have a staggering amount of complexity

• Branches introduce multiple paths (behaviors) for a program
• Visually think about each path you could take in a flow chart of the program

• Hypothesis: There are more paths in the Linux kernel than there are atoms
in the known universe
• Known universe spans 93 billion light years
• Estimated to have 500 billion galaxies each with approximately 400 billion stars

• Estimated that 120 to 300 sextillion (1.2 x 10²³ to 3.0 x 10²³) stars exist
• On average, each star can weigh about 1035 grams

• Each gram of matter is known to have about 1024 protons, or about the same number of
hydrogen atoms (since one hydrogen atom has only one proton)

• Gives us a high estimate of atoms in known universe is 1086 (one-hundred thousand
quadrillion vigintillion)

• When it sounds like a 1st grader is just making up numbers, then you know it is a big
number!

Source: https://www.universetoday.com/36302/atoms-in-the-universe/

(spoiler alert: there are actually many more paths!)

https://www.universetoday.com/36302/atoms-in-the-universe/

Challenge: Path Explosion Problem

• Remember we can draw software as a
flow chart…

• A single function in the Linux kernel
(lustre_assert_wire_constants) has 2656

paths with no loops involved!
• Only 1086 atoms in the known universe…
• 2656 ≈ 10197

• Paths are multiplicative across
functions…

• Loops test the limits of human
comprehension…

13

if(condition_1){
// code block 1

}
if(condition_2){

// code block 2
}
if(condition_3){

// code block 3
}
…
if(condition_n){

// code block n
}

Condition 1

Condition 2

Condition n

false

false

false

true

true

true

…false true

2n paths!

We have a lot of programs

• Truly we have no idea how many programs there are since software is
absolutely ubiquitous
• Over 700 fully featured programming languages [1]

• GitHub reached 100 million open source repositories of code in 2018 [2]

• Estimated that we write 111 billion new lines of code every year [7]

• Enough programs that GitHub plans to archive source code at the North Pole [3]

GitHub Artic Vault: Burying your bugs in the permafrost for the next 1000 years…

https://www.youtube.com/watch?v=fzI9FNjXQ0o

https://www.youtube.com/watch?v=fzI9FNjXQ0o

Programs are changing at a ridiculous pace

• Just the Linux kernel has:
• 2,246 lines of code changed per

day [4]

• 19,093 lines of code added per day
(795 lines added per hour) [4]

• 2,681 lines of code removed per
day [4]

• Code contributions from over
15,000 developers and 500
companies as of 2017 [5]

Source: https://en.wikipedia.org/wiki/Linux_kernel

https://en.wikipedia.org/wiki/Linux_kernel

Programs are infested with bugs that can last years

• Software remains infested with bugs creating security vulnerabilities
• Industry average of 10 to 50 defects per 1,000 lines of code [16]

• A vulnerability lives in a codebase for an average of 438 days before it is discovered [8]
• Shellshock was discovered 25 years later after it was created!

• Zero-day attacks go undetected for an average of 312 days before discovery [9]

• A security patch is created on average 27 days before the vulnerability is disclosed [8]
• Organizations take an average of 100-120 days to patch a vulnerability [10]

• Highest average remediation time of 176 days for financial organizations [13]

• Exploits have appeared as quickly as 3 days following disclosure [12]
• Average life expectancy of an exploit is 6.9 years [11]

• The probability that a vulnerability will be exploited during the first 40-60 days (well
before the average remediation period) following disclosure is over 90% [10]

We still haven’t learned how to write correct software

• We keep making the same mistakes…
• 15-25% of all bug patches in Linux kernel were themselves buggy [14]

• ~85% of all high severity Android vulnerabilities were violations of low-level
data structures [15]

• 24.24% of all high and critical severity CVEs between 2002-2019 were due to
buffer bound issues (my analysis of MITRE CVEs grouped by NIST CWE tags)
• Buffer overflows vulnerabilities first documented in 1972

• “Smashing The Stack For Fun and Profit” was published in 1996

What is dynamic analysis?

How do we analyze a program?

• Two main approaches:
• Static analysis

• Don’t run the program, dissect the logic and examine program artifacts
• Advantage: Bird’s eye view of everything that could possibly happen during execution
• Concern: Number of program behaviors is HUGE
• Concern: Is it feasible to reach/trigger an artifact of concern?

• Dynamic analysis
• Run the program with some inputs and see what it does
• Advantage: Everything we observe is feasible (we just saw it happen)
• Concern: Input space is HUGE
• Concern: Did we test the interesting inputs?

• What are we looking for?
• Bugs: Memory corruption, rounding errors, null pointers, infinite loops, stack overflows, race

conditions, memory leaks, business logic flaws, …
• Not every issue translates to a crash!

A Spectrum of Program Analysis Techniques

Source: Contemporary Automatic Program Analysis,
Julian Cohen, Blackhat 2014

Key Questions for Dynamic Analysis

• What is monitored in the program?

• How are program inputs generated?

• What is being searched for?

• What is executed in the program?

What is monitored in the program?

What is monitored in the program?

• Blackbox
• No knowledge of program internals or state

• Only monitoring inputs/output values or environment changes (e.g. memory)

• Graybox
• Graybox we can look at some parts of the program (e.g. values at branches)

• Whitebox
• Whitebox we can look at all of the program (e.g. we have source code or we

can access any of the binary code)

Blackbox Fuzzing

How are inputs generated?

Blind Fuzzing

• Start with a test corpus of well formed
program inputs or generate new inputs

• Apply random or systematic mutations to
program inputs

• Run program with mutated inputs and
observe whether or not the program
crashes

• Repeat until the program “crashes”
• Input space

• Reading data in a loops could make the input
space infinite

• There are 2n possible inputs for a binary input
of length n

Traditional
(blind) Fuzzer

Program

inputs

crashes

Crash Inputs

This is about all we can do without
examining program artifacts…

What is being searched for?

What is being searched for?

• Crash vs. no crash

• Expected vs. unexpected output

• Tainted vs. untainted output
• Example: Web app fuzzers provide XSS code as input and monitor for XSS

execution

• Harness can translate a domain specific problem to a standard
detection output
• Example: if(some program state) { crash(); }

Data Drives Program Execution

“The illusion that your program is
manipulating its data is powerful. But it is
an illusion: The data is controlling your
program. When you sort a deck of cards,
you’re moving them around, but it’s the
numbers on the cards that are telling you
where to move them.” - Taylor Hornby, a
judge for the Underhanded Crypto Contest

Program
input output

Graybox Fuzzing

++[>+[+]]

Data Drives Program Execution

input output

• Use static analysis to look
ahead at all program paths

• Monitor which path was
taken for a given input

• Correlate information of
how changing the input data
changes the executed
program paths

Guided Fuzzing: Feedback Driven Input Generation

• Start with a test corpus of well formed
program inputs

• Apply random or systematic mutations to
program inputs

• Instrument the program branch points
• Run the instrumented program with

mutated inputs and 1) observe whether or
not the program crashes and 2) record the
program execution path coverage

• If the input results in new program paths
being explored then prioritize mutations of
the tested input

• Repeat until the program crashes

Guided Fuzzer
Instrumented

Program

inputs

crashes

Crash Inputs

execution trace

Heuristics guide genetic algorithm to generate
program inputs that push the fuzzer deeper
into the program control flow, avoiding the
common pitfalls of fuzzers to only test
“shallow” code regions.

AFL (American Fuzzy Lop) Fuzzer

• Recognized as the current industry standard
implementation of guided fuzzing
• Effective mutation strategy to generate new inputs

from initial test corpus
• Lightweight instrumentation at branch points
• Genetic algorithm promotes mutations of inputs that

discover new branch edges
• Aims to explore all code paths

• Huge trophy case of bugs found in wild
• 371+ reported bugs in 161 different programs as of March

2018
• Tool: http://lcamtuf.coredump.cx/afl/

• A game of economics. AFL tends to “guess” the
correct input faster than a smart tool
“computes” the correct input

http://lcamtuf.coredump.cx/afl/

Path Coverage is a Surprisingly Effecting Heuristic

Sources: https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2016/02/say-hello-to-afl-analyze.html

Randomly generated JPEGs that actually parse by libjpeg

• The heuristic to generate inputs
that drives the execution to new
paths can be effective

• Impressive given that JPEGs are
non-trivial parsers that include
Huffman compression and have
multiple magic header sequences
(e.g. 0xFFD8 and 0xFFD9)

• The inputs that survive share
some common properties

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2016/02/say-hello-to-afl-analyze.html

Fuzzer Harness

• AFL assumes all inputs are binary files accepted by a program

• A main function (program entry point) is required to execute a
program
• A library typically does not have a main method, so one must be provided to

make a complete executable program

• Practically needed to translate fuzzer generated inputs to expected
program input format
• Example: AFL generates a file as input. To fuzz a DNS service the harness must

translate the generated input file to a DNS packet or data structure a function
takes as a parameter

What is the state-of-the-art dynamic analysis?

Whitebox Fuzzing

Symbolic Execution

• Replace concrete assignment values with symbolic
values

• Perform operations on symbolic values abstractly
• At each branch fork the abstracted logic

• Dealing with path explosion problem is a challenge!

• Utilize SAT/SMT solvers to determine if the
constraints are satisfiable for a path of interest
• Example: fail occurs if y * 2 = z = 12 is satisfiable

• Solve(y * 2 = 12, y), y = 6 satisfies the constraint
• Failure occurs when read() returns 6

• Reasoning about true path of “if(a * b == c)” could
force analysis to solve prime factorization if c is the
product of two large primes

int f() {
...
y = read();
z = y * 2;
if (z == 12) {
fail();

} else {
printf("OK");

}
}

On what inputs does the code fail?

https://github.com/illera88/Ponce

https://github.com/illera88/Ponce

Concolic Execution

• A hybrid of dynamic analysis and symbolic execution
• Perform symbolic execution on some variables and concrete execution on other

variables
• Symbolic variables could be made concrete in order to:

• Move past symbolic limitations such as challenges in modeling the program environment
(example network interaction)

• Deal with path explosion problem and satisfiability problem by replacing difficult symbolic
values with concrete values to simplify analysis

• Pays cost in time for symbolic computations and execution time of program

• Several well known tools:
• Angr - http://angr.io
• KLEE - https://klee.github.io
• DART - https://dl.acm.org/citation.cfm?id=1065036
• CREST (formerly CUTE) - https://code.google.com/archive/p/crest
• Microsoft SAGE - https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

http://angr.io/
https://klee.github.io/
https://dl.acm.org/citation.cfm?id=1065036
https://code.google.com/archive/p/crest
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

DARPA’s Cyber Grand Challenge (CGC)

• “Cyber Grand
Challenge (CGC) is a
contest to build high-
performance
computers capable
of playing in a
Capture-the-Flag
style cyber-security
competition.”

• DEFCON 2016

https://www.darpa.mil/program/cyber-grand-challenge

https://www.darpa.mil/program/cyber-grand-challenge

DARPA’s Cyber Grand Challenge (CGC)

• Fully automatic reasoning to:
• Detect program vulnerabilities

• Patch programs to prevent
exploitation

• Develop and execute vulnerability
exploits against competitors

• No human players!

CGC Results (Reading Between the Lines)

• All teams published the same essential combination of strategies
• Guided fuzzing (nearly every team had modified AFL)
• Symbolic/concolic execution to assist fuzzer sometimes aided by classical program

analyses (points-to, reachability, slicing, etc.)
• Some state space pruning and prioritization scheme catered to expected

vulnerability types

• Effective patches were more often generic patches which addressed the
class of vulnerabilities not the one-off vulnerability that was given
• Example: Adding stack guards for memory protection

• Competitor scores were close!
• The difference between 1st and 7th place was not substantial

• Classes of vulnerabilities were known a priori

How can we do better?

A Simple Observation…

• Humans armed with even simple tools are still finding bugs that huge racks of
super computers can’t find…
• Case Study: CVE-2002-1337

• Remember that the programs we care about are created by humans

46

• Humans naturally imbue code with
additional structure (e.g. design patterns)

• Leverage strengths of human + machine
• Let humans amplify machine reasoning
• Let machines amplify human reasoning
• Premise of DARPA CHESS program

• Case Study: Linux lock/unlock pairing
• Teaching a machine the developer's

pattern of using unique types for instances
avoids expensive pointer analysis

Program Analysis, OODA, and YOU

• “Security is a process, not a product” – Bruce Schneier

• Apply John Boyd’s OODA loop to software and security

Program Analysis, OODA, and YOU

“...IA > AI, that is, that intelligence amplifying
systems can, at any given level of available
systems technology, beat AI systems. That is,
a machine and a mind can beat a mind-
imitating machine working by itself.”
– Fred Brooks

You

Opponent

Our opponent is time!

A New Approach

• Statically-informed Dynamic Analysis
• Human selects events of interest

• Static computation of relevant
behaviors

• Automatic program modifications
prevent execution of irrelevant
behaviors

• Automatic generation of skeleton test
harness for targeted dynamic analysis

Spectrum Grid by Julian Cohen [Blackhat 2014]

SID

49

A New Approach

• Dynamically-informed Static Analysis
• Human completes test harness by

adapting fuzzer inputs to program
inputs

• Guided fuzzer drives input generation
on modified program

• Dynamic invariant detection is
performed only on relevant execution
traces

• Static program graph is annotated with
behavior-relevant invariants

SID

DIS

Spectrum Grid by Julian Cohen [Blackhat 2014]50

Revisit: What is monitored in the program?

Program Invariants

“Programmers have invariants in mind … when they write or otherwise manipulate
programs: they have an idea of how the system works or is intended to work, how

the data structures are laid out and related to one another, and the like.
Regrettably, these notions are rarely written down...” ~ Michael Ernst

Program Invariant:
• “a property that is true at a particular program point or points” [Ernst 2000]

• “a property of a program that is always true for every possible runtime state
of the program” [MIT OpenCourseWare 6.005]

Dynamic Invariant Detection

• Daikon: Dynamic Likely Invariant Detection
• Dynamic analysis only observes feasible paths

• Program variables are instrumented on all program paths

• BYO test input strategy, typically used with unit tests or
randomized testing

• Large collection of program invariant patterns (ex: types)

• Correctness is w.r.t. what was observed. Example: “x > 0”
may only be true if negative values were never tested.

• Can be expensive. Instrumentation adds overhead to
execution time and invariant detection must employ
many logic tricks in order to scale.

• Tool: https://plse.cs.washington.edu/daikon/

Instrumented
Program

BYO Test Inputs

Execution Traces w/
Variable Values

Invariant Detector

Likely Invariants

https://plse.cs.washington.edu/daikon/

Recap: Control Flow Graph

6 program paths

Projected Control Graph

• In 2016, Tamrawi proposed a PCG abstraction
• Defined a graph homomorphism to efficiently

group program behaviors into equivalence classes

• Parameterized by control flow events of interest

• Only relevant event statements and necessary
conditions are retained CFG to PCG

Transformation

Homomorphic Program Invariants

What are the program invariants that hold
true with respect to an equivalence class of
control flow paths?

What are the values of y when the true path
of the y != 0 branch is taken?

Recall: y = x % 2;
y ∈ {-1, 0, 1} for all paths
y ∈ {-1, 1} for the 4 relevant paths

… if y is -1 then division by zero will occur!

4 paths in the
control flow graph
are equivalent with
respect to whether

or not a division
operation occurs

Revisit: What is executed in the program?

Targeted Fuzzing

• Do we have to fuzz from the start of the program? No!

• Most techniques necessitate manually developing a harness, which is
a natural opportunity to “target” fuzzing on a subset of the program

• Some functions are more natural to fuzz then others (ex: library APIs)
• Helper functions may depend on state of global variables or complex data

structures as parameters

• To generically fuzz a function or set of functions the dependencies
must be mocked
• Fuzzing internal program states (mocked dependencies) may ignore a

practical constraint on program state enforced at runtime
• Human reasoning could be used to add fuzzer input generation constraints

Targeted Dynamic Analysis

• Decouples target code from control and
data dependencies by replacing objects
with mocked objects
• Global variables
• Method parameters passed
• Method return values

• Mocked objects have no dependencies

• Mocked object values can be
programmatically stimulated

Mockingbird: A Framework for Enabling Targeted Dynamic
Analysis of Java Programs.

Example Targeted Dynamic Analysis

Mock Specification

Revisit (Again): What is executed in the
program?

Restricted Program Fuzzing

• A fuzzer could be made smarter by
changing the program being fuzzed

• Statically compute a program restricted to
code relevant to a crash
• Assumes some knowledge of relevant crash

events can be specified a priori
• Example: Compute program slice and retain

only crash relevant program statements
• Example: Compute PCG of crash events and

abort on paths that do not lead to crash
events

• Faster execution
• Subset of all program behaviors

Fuzzer
Restricted
Program

inputs

crashes

Crash Inputs

Original
Program

New Approach Workflow

• Human: Identify potentially interesting program
behaviors

• Machine: Generate a program that restricts
execution to the identified behaviors and
instruments program points on interesting paths

• Human: Targets dynamic analysis at a particular
program entry point

• Machine: Fuzz and produce invariants
• Generate test inputs for given entry point and guide

test generation based on execution feedback
• Output invariants of interesting program behaviors

• Human: Repeat process to improve human
comprehension of program

Targeted
Guided Fuzzer +

Invariant
Detector

Restricted
Instrumented

Program

inputs

crashes

Relevant Crash
Inputs + Crash

Invariants

execution trace

Original
Program

Motivating Example

• Is this program bug free?

• Could a division by zero error
occur on line 24?

• What conditions are relevant to
verifying the program?

• If the program is buggy, what
inputs are required to produce
the error?

• What input constraints must be
satisfied to produce the error?

• Is there a family of buggy inputs?

Program Modifications (1)

• Technique 1 - Aborting Irrelevant
Path Execution
• Only modification needed to compute

behavior-relevant invariants
• Inject an abort signal at the start of an

irrelevant path
• Insert an abort-irrelevant signal before

any statement in the CFG that is a
successor of a branch reachable from a
reverse step in the PCG from the ⊥,
omitting events

• Optionally, insert an abort-relevant
signal after events reachable in a
reverse step of the PCG from the ⊥

CFG PCG(E), E=Division Statement

Program Modifications (2)

• Technique 2 - Eliding Irrelevant Statements
• Not strictly necessary

• Improves fuzzing speed

• Program slice computes relevant control and
data flow events

• Elide irrelevant statements by injecting a pair of
goto and label statements.

• Specifically, for any edge in the PCG that is not
in the CFG add a label before the successor
node and a goto label statement after the
predecessor node.

Jump

Jump

Program Modifications (3)

• Technique 3 – Injecting Fail Early Assertions
• Not strictly necessary

• Can be used to further restrict relevance to a value at a
statement. Example assert(d!=0) before the statement
print(x / d).

• Can also be used to improve fuzzing speed by
preventing execution of relevant statements.

• Specifically, for each condition in the PCG, insert an
assert-relevant(condition) statement at the location of
the last reaching definition of the condition variables. assert (d==0)

assert(y % 2 == 0)

assert(y < 128)

Two inputs will crash the program!
Crash Input 1: x = 1, y = 2
Crash Input 2: x = 3, y = 4

Case Study: BraidIt DARPA Challenge App

• Space/Time Analysis for Cybersecurity (STAC)

• Scenario: Detect algorithmic complexity (AC)
and side channel (SC) vulnerabilities in a
compiled bytecode applications

• Measured with respect to execution time or
volatile/non-volatile memory space and an
attacker input budget
• Example: Send 1k byte request to cause 300 sec

runtime execution

• Example: Measure the response times of 100
requests to learn private key

<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

Case Study: BraidIt DARPA Challenge App

• Case study audit of a DARPA STAC challenge application

• Application was not supposed to be vulnerable…
• But we didn’t know that…

Case Study: BraidIt DARPA Challenge App

• BraidIt is a peer-to-peer 2-player game that
tests the players' ability to recognize
topologically equivalent braids.

• BraidIt is based on the word equivalence
problem in the Artin braid group. The
application does all the dirty work, so users
need not understand the theory and can treat it
as a fun guessing game.

Case Study: BraidIt DARPA Challenge App

• Is there an algorithmic complexity vulnerability in space that would
cause the challenge program to store files with combined logical sizes
that exceed the resource usage limit given the input budget?

• Input Budget: Maximum sum of the PDU sizes of the application
requests sent from the attacker to the server: 2 kB (measured via sum
of the length fields in tcpdump)

• Resource Usage Limit: Available Logical Size: 25 MB (logical size of
output file measured with 'stat’)

• Probability of Success: 99%

Application Was Hardened Against Fuzzing

Identification of an Interesting Loop

• freeNormalize and normalizeOnce each write
to log file

• normalizeCompletely is an instance method
that depends on existing program state

• The termination of normalizeCompletely
depends on the result of isReduced

• Involves loop nesting and recursion

Identification of an Interesting Loop

• isReduced reads a global variable called intersections

• freeNormalize and normalizeOnce update intersections

• intersections is a string variable that is initially attacker controlled

Hypothesis: Can there be a string that has the property of being
irreducible and therefore cause an infinite loop that writes to the file
system?

Complex String Operations

• 9 unique string operations in 62 locations
• 20 of which are within loops

• 8 unique character level operations in 60 locations
• 27 locations are within loops

Inter-procedural Control Flow Graph

isReduced

normalizeCompletely

freeNormalize

normalizeOnce

takeFollowingSection

eliminateSection

takeInverse

Relevant Paths

• What do we care about?
• The loop should not exit

• isReduced() should always return false

• If an input gets reduced then abort
immediately

Targeted Dynamic Analysis of normalizeCompletely

• Initial experiment: 20 hours of
directly fuzzing
normalizeCompletely…
• H. Invariant: isReduced is always false

• H. Invariant: intersections is always a
non-empty string

• Input: “ËĎġčçęêďªã”
• What does this mean?

Refined Experiment: Constrained Fuzzing

• Plait Constructor does some complex validation on intersections,
which end with the following checks
• Checks that each character is alphabetic
• Checks that each character’s lowercase character is greater than 122 +

numStrands + 2
• numStrands is attacker controlled input between 8 and 27

• Experiment: Iterate over strings of the alphabet described by
constructor
• 20 minutes to find smallest malicious inputs +13 more…

• Minimal Input: “ªªª”
• What does this mean?

Refined Experiment: Homomorphic Invariants

H. Invariant: isReduced is always false

H. Invariant: intersections is always a non-empty string

H. Invariant: intersections contains a common subsequence of a single
character ‘ª’

Refined Hypothesis: A property of the character ‘ª’ can be used to
create an irreducible string that causes an infinite loop that writes to
the file system.

Reasoning with Homomorphic Invariants

• Debug with the minimal input “ªªª” and pay attention character level
operations
• freeNormalize method removes a pair of case insensitive matching characters

where one character is the first character in the string (leaving a single
character ‘ª’ remaining)

• isReduced method can return false if the string contains an uppercase
character of a lowercase character

• Uppercase(ª) == Lowercase(ª)

• A fine scheme for ASCII, but Java Strings support Unicode UTF-16 standard…
• There are 395 UTF-16 characters that alphabetic and lowercase is their uppercase

• Any of the 395 could be used to craft an exploit (we have identified a family of exploits!)

Thank you!

• Questions?

• Slides: ben-holland.com

References

• [1] https://en.wikipedia.org/wiki/List_of_programming_languages

• [2] https://github.blog/2018-11-08-100m-repos/

• [3] https://archiveprogram.github.com/

• [4] https://www.developer-tech.com/news/2017/jul/05/linux-kernel-
412-developers-added-795-lines-code-hour/

• [5] https://www.linuxfoundation.org/blog/2017/10/2017-linux-
kernel-report-highlights-developers-roles-accelerating-pace-change/

• [6] https://cybersecurityventures.com/application-security-report-
2017/

• [7] https://www.visualcapitalist.com/millions-lines-of-code/

https://en.wikipedia.org/wiki/List_of_programming_languages
https://github.blog/2018-11-08-100m-repos/
https://archiveprogram.github.com/
https://www.developer-tech.com/news/2017/jul/05/linux-kernel-412-developers-added-795-lines-code-hour/
https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
https://cybersecurityventures.com/application-security-report-2017/
https://www.visualcapitalist.com/millions-lines-of-code/

References

• [8] Li, Frank, and Vern Paxson. "A large-scale empirical study of security
patches." Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017.

• [9] Bilge, Leyla, and Tudor Dumitraş. "Before we knew it: an empirical study of
zero-day attacks in the real world." Proceedings of the 2012 ACM conference on
Computer and communications security. 2012.

• [10] http://pages.kennasecurity.com/rs/958-PRK-049/images/Kenna-
NonTargetedAttacksReport.pdf

• [11]
https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR175
1/RAND_RR1751.pdf

• [12] https://www.fireeye.com/blog/threat-
research/2015/04/angler_ek_exploiting.html

http://pages.kennasecurity.com/rs/958-PRK-049/images/Kenna-NonTargetedAttacksReport.pdf
https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf
https://www.fireeye.com/blog/threat-research/2015/04/angler_ek_exploiting.html

References

• [13] http://info.nopsec.com/rs/736-UGK-
525/images/NopSec_StateofVulnRisk_WhitePaper_2015.pdf

• [14] Yin, Zuoning, et al. "How do fixes become bugs?."Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. ACM, 2011

• [15] https://security.google-blog.com/2019/05/queue-hardening-
enhancements.html

• [16] https://www.sciencedirect.com/topics/engineering/defect-
density

http://info.nopsec.com/rs/736-UGK-525/images/NopSec_StateofVulnRisk_WhitePaper_2015.pdf
https://security.google-blog.com/2019/05/queue-hardening-enhancements.html
https://www.sciencedirect.com/topics/engineering/defect-density

