
Mockingbird: A Framework for Enabling Targeted
Dynamic Analysis of Java Programs∗

Derrick Lockwood Benjamin Holland Suresh Kothari
Department of Electrical and Computer Engineering, Iowa State University

Ames, IA 50011 {djlock,bholland,kothari}@iastate.edu

Abstract—The paper presents the Mockingbird framework
that combines static and dynamic analyses to yield an efficient
and scalable approach to analyze large Java software. The frame-
work is an innovative integration of existing static and dynamic
analysis tools and a newly developed component called the Object
Mocker that enables the integration. The static analyzers are
used to extract potentially vulnerable parts from large software.
Targeted dynamic analysis is used to analyze just the potentially
vulnerable parts to check whether the vulnerability can actually
be exploited.

We present a case study to illustrate the use of the framework
to analyze complex software vulnerabilities. The case study is
based on a challenge application from the DARPA Space/Time
Analysis for Cybersecurity (STAC) program. Interestingly, the
challenge program had been hardened and was thought not to
be vulnerable. Yet, using the framework we could discover an
unintentional vulnerability that can be exploited for a denial of
service attack. The accompanying demo video depicts the case
study.
Video: https://youtu.be/m9OUWtocWPE

Index Terms—Static analysis, Dynamic Analysis, Fuzzing,
Software Vulnerability

I. INTRODUCTION

We present the Mockingbird framework; it combines static
and dynamic analyses using a statically-informed dynamic
analysis [1] approach. This approach suits analysis tasks that
can be subdivided into: (a) extracting relevant code buried
in large and complex software, and (b) verifying specified
properties with respect to the relevant code. An important
application is detecting side channel (SC) and algorithmic
complexity (AC) vulnerabilities [2]. The paper [3] describes
how statically-informed dynamic analysis can be applied for
detecting such open-ended vulnerabilities. We demonstrate
the use of the Mockingbird framework for detecting AC
vulnerabilities (e.g., Billion Laughs [4]). Combining static and
dynamic analyses opens the possibility to have the best of both
worlds - cover all execution paths and yield precise results.
However, how to do it effectively is a challenge [5]–[7].

The Mockingbird framework is an innovative integration of
existing static and dynamic analysis tools and a newly devel-

* This material is based on research sponsored by DARPA under agreement
numbers FA8750-15-2-0080 and FA8750-12-2-0126. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government.

oped component Object Mocker that enables the integration.
Specifically, the Mockingbird framework incorporates:

• Existing static analyzers built using the Atlas plat-
form [1], [8]–[10]. These analyzers are used to extract
the relevant code - the code that is potentially vulnerable.

• The existing AFL fuzzer [11] supplemented by the Ke-
linci, a tool that interfaces AFL to operate on Java
programs [12].

• The Object Mocker that can automatically create har-
nesses to apply the AFL fuzzer to dynamically analyze
the relevant code extracted using the static analyzers.

The key novelty of the Mockingbird is targeted dynamic
analysis (TDA). TDA performs dynamic analysis of just the
relevant code using binary inputs. The framework provides
the capability to mock any Java object type and produces a
testing harness that transforms binary inputs to appropriate
object types. For fuzzers such as AFL, users manually create a
test harness that translates the binary inputs from the fuzzer to
the data structures expected by the target program. Developing
the harnesses manually for just the relevant code is difficult
and laborious because the program state must be considered as
the input. The program state is communicated to the relevant
function via the stack memory using function parameters and
return values or through the heap memory using reads and
writes to global variables. The harness incorporates mocked
objects that mimic the program artifacts that carry the inputs
into the relevant code. The Mockingbird framework creates
the harnesses automatically. The framework earns its name
from the term “mock objects” as used by the testing commu-
nity [13].

The Mockingbird framework optionally allows constraints
to be placed on the values of object fields that store the en-
capsulated program data. With this enhancement, it is possible
to systematically incorporate domain-specific knowledge into
the automatically generated test harnesses. For example, if a
program only operates on byte arrays that begin with a magic
sequence, such as 0xFFD8 in the case of JPEG file formats,
then the test harness can simply prefix the program input with
the known sequence to increase the chances of quickly driving
the program execution in meaningful ways. The Mockingbird
framework supports configurable input generation constraints
to be specified for test harnesses as a means for injecting
domain knowledge.

We present a case study in which the Mockingbird frame-

works is used to detect the AC vulnerability in a challenge
application from the DARPA’s STAC program.

II. A MOTIVATING EXAMPLE FOR MOCKING

Mock objects are simulated objects that mimic the behavior
of real objects in controlled ways. Mock objects serve two
important purposes: 1) they allow direct control of the data
values that could have reached the relevant code, and 2)
they effectively isolate the relevant code by breaking existing
control and data dependencies (replacing an object with a
mock object removes dependencies since mock objects have
no program dependencies).

The need for mocking is illustrated with a simple code
example shown in Listing 1. We shall also use this example to
illustrate how the test harness can be generated automatically.

Listing 1. Motivating Example
1 public class Example {
2 public static boolean isVowel(char c) {
3 return c == 'a' || c == 'e' || c == 'i'
4 || c == 'o' || c == 'u' || c == 'y';
5 }
6 class Pet {
7 private String name;
8 public Pet(String name) {
9 this.name = name;

10 sleep (5000);
11 }
12 public String getName () {
13 return name;
14 }
15 public double getVowelRatio () {
16 double vowels = 0;
17 String name = getName ().toLowerCase ();
18 for(char c : name.toCharArray ()) {
19 if(isVowel(c)) {
20 vowels ++;
21 }
22 }
23 return vowels / (name.length () - vowels);
24 }
25 }
26 }

The getVowelRatio method has a division-by-zero vulner-
ability that occurs when the input consists of only vowels. In
order to perform a TDA of the getVowelRatio method using
existing tools such as Kelinci [12], which adapts the AFL
fuzzer [11] to execute Java programs, a test harness would
have to be developed that constructs instances of the Pet class
with desired string values to test. Furthermore, constructing the
objects could involve code that is unnecessary for mocking but
it consumes significant execution time. The “sleep" on line 10
symbolizes such unnecessary code. By mocking the instance
variable “name”, we can directly control the value of “name”
and elide the expensive constructor logic.

III. MOCKINGBIRD FRAMEWORK

Figure 1 depicts an overview of the Mockingbird framework
architecture and workflow.

As shown in Figure 1, a variety of program analyzers are
used to extract the relevant code given a class of vulner-
abilities. The static program analyzers are designed to be

Fig. 1. Mockingbird Framework Architecture and Workflow

configurable to cater to different classes of software vulnerabil-
ities and the analysis results in the inter-procedural projected
control graph (PCG) that succinctly captures relevant program
behaviors [10], [14], [15].

These program analyzers are built on top of Atlas [8], a
graph database platform with graphs as the unifying abstrac-
tion to build program analyzers for a variety of languages
including Java and Java bytecode. The case study in Section IV
illustrates how these program analyzers are used to extract the
relevant code from large and complex software.

As shown in Figure 1, the relevant code feeds into
the Mockingbird’s configuration component. This component
builds a configuration file, which serves as the specification
for creating the harness. For the code shown in Listing 1, the
getVowelRatio instance method in the Pet class is extracted
as the relevant code. The corresponding configuration file is
shown in Listing 2.

Listing 2. An Example of Mockingbird Configuration
1 {
2 "definition": {
3 "class": "Example$Pet",
4 "method": "getVowelRatio",
5 "instance_variables": [
6 {
7 "name": "name"
8 }
9]

10 },
11 "config": {
12 "timeout": 1000
13 }
14 }

The configuration file is on purpose, human-readable so that
a human operator can easily refine the mocking specifications.
As mentioned earlier, one purpose is to enable injection of
domain knowledge to constrain the inputs to improve the TDA
efficiency. It also provides an opportunity to manually verify
and alter the mocking.

As shown in Figure 1, the Object Mocker creates the
test harness that incorporates the mocked objects - as spec-
ified by the configuration file. Internally, the Object Mocker
leverages the bytecode manipulation capabilities provided by

ByteBuddy [16] and the ubiquitous ASM [17] bytecode ma-
nipulation library to generate runtime compatible mock objects
containing only the fields and methods required to execute the
relevant code. With the configuration file shown in Listing 2,
the Pet object is mocked, without calling the constructor, by
providing a simulated instance variable called “name” (the
fact that “name” is a java.lang.String type is picked up
automatically by the framework using Java reflection).

Pure methods (methods that do not mutate pre-existing
program state) as identified by [9] are not mocked. For
the motivating example, the isVowel method is correctly
identified as pure and automatically excluded from mocking.
By default, the JDK is not mocked.

As shown in Figure 1, after the harness is created the rest
of TDA can be performed with AFL. The AFL iteratively
generates new binary inputs through mutations guided by a
genetic algorithm to mutate the binary inputs to maximize
path coverage through a feedback loop.

Importantly, the Mockingbird framework can use another
fuzzer in place of AFL. Moreover, a fuzzer such as AFL can be
further enhanced by creating custom tools that can work with
the fuzzer. The Mockingbird capability to programmatically
control the data of each mocked field, is valuable for devel-
oping custom dynamic analysis tools. This is brought out in
the case study in Section IV. Combined with Daikon [18], the
Mockingbird framework can be used to compute the invariants
with respect to the relevant code and not the entire program
[19]. In our study, the program invariants are computed for
the potentially vulnerable code. As we will show in the case
study in Section IV, the invariants can be valuable to gain a
holistic understanding of the root cause of the vulnerability.

A tool called afl-unicorn [20] creates test harnesses and
performs targeted dynamic analysis but it works only for
assembly languages and does not address the problem of
mocking objects. Several object mocking tools exist, such as
TestNG and Mockito [21], but we found that these tools made
many low level assumptions that prevented the direct control of
object states that we required for generalized dynamic analysis.

Our implementation is open source and freely available
online at: https://github.com/kcsl/Mockingbird.

IV. CASE STUDY

We examine a DARPA STAC challenge application called
BraidIt for AC vulnerabilities. The application’s source code
is available at: https://github.com/Apogee-Research/STAC.

The case study demonstrates: (1) the use of Mockingbird
framework to efficiently discover an algorithmic complexity
vulnerability, and (2) a follow-up experiment using Mocking-
bird’s APIs to create a custom tool for computing program
invariants that provide holistic understanding of the vulnera-
bility. The follow-up experiment reveals not just one input but
a class of inputs that cause the vulnerability; in particular, it
reveals the smallest input that can cause the vulnerability.

DARPA’s BraidIt application is described as a two player
peer-to-peer game where players’ attempt to recognize topo-
logically equivalent braids (also known in mathematics as an

Artin braid group [22]). For the demonstration purpose, we
have chosen a relatively small application with 5,844 lines
of decompiled Java code (not including any of the 17 third-
party library dependencies). Static analysis reveals that the
application contains 51 loops, of which 29.4% of the loops
are contained in a single class called Plait.

To find the relevant code for an AC time vulnerability,
the loop analyzer [23] is used to locate loops with complex
termination conditions. The set of loops is further refined by
a reachability analyzer that retains only those loops whose
termination conditions can be affected by external inputs. This
leads to a loop in the normalizeCompletely method of the
Plait class. The loop is shown in Listing 3.

Listing 3. Relevant Code of Vulnerable Loop
1 public void normalizeCompletely () {
2 this.freeNormalize ();
3 while (!this.isReduced ()) {
4 this.normalizeOnce ();
5 this.freeNormalize ();
6 }
7 }

The loop’s termination condition depends on the result of
the isReduced method. A data flow analysis of the isReduced
method reveals that: 1) the termination condition consists
of a complex series of string manipulations of a global
variable called intersections, which freeNormalize and
normalizeOnce both mutate in every loop iteration, and 2)
the intersections variable is reachable from the outside.

Moreover, a static analyzer for locating code relevant for AC
space vulnerability also reports the loop shown in Listing 3 be-
cause the loop children normalizeOnce and freeNormalize
write to the file system during each iteration of the loop. With
incriminating evidence gathered from various static analyzers,
the code shown in Listing 3 becomes a prime target for TDA.

With the help of static analyzers, we have found the relevant
code - it is small but extremely complex code. It is quite
difficult to reason about this code manually or by using
static analysis. In fact, between the two methods operating
on the intersections variable there are 9 unique string
operations in 62 locations, 20 of which are within loops as
well as 8 unique character level operations in 60 locations,
of which 27 locations are within loops. This is where TDA
can be immensely helpful. The isReduced method computes
a non-trivial property on the intersections string, which
is changing during each loop iteration. The question is: can
there be a string that has the property of being irreducible, and
therefore cause an infinite loop that writes to the file system?
If true, it is actually an algorithmic complexity vulnerability in
time as well as space and thus an opportunity for the attacker
to launch an extremely effective denial of service attack.

Running the experiment using the Mockingbird framework
yielded in 20 hours the first input that actually triggers the
AC time vulnerability; additional 22 inputs were found in
39 hours. The first input was “ ;” it hints that the
vulnerability has to do with Unicode localization, but it does
not explain the root cause of the vulnerability.

A. A Follow-up Experiment

The motivating questions for this follow-up experiment are:
Why is the application vulnerable to particular string inputs?
Is there actually a class of inputs for the exploit? Answers to
such questions are important to gain holistic understanding of
the vulnerability and modify the program to eliminate the root
cause of the vulnerability.

Using Mockingbird’s APIs, we can quickly build a custom
tool to help answer these questions. In this experiment, we
targeted the same relevant code and retained the same mocking
specifications, but replaced the AFL driver on the front-end
with a brute-force search of the alphabet of characters accepted
by the Plait constructor. Within 20 minutes the brute-force
search revealed the string value “ ” as the minimal string
for the exploit. The Daikon invariant detector reveals that all
previously discovered strings share a common substring (‘ ’).

Debugging the application with this minimal input re-
veals the heart of the vulnerability. It reveals that the
freeNormalize method removes a pair of matching char-
acters (leaving a single ‘ ’ character remaining). Next the
isReduced method returns false if the string contains an
uppercase character of a lowercase character. This scheme is
perfectly reasonable for ASCII characters, but there exists a
small set of alphabetic Unicode characters such as ‘ ’ where
uppercase(‘ ’)==lowercase(‘ ’). Since a string of a single
lowercase character that is identical to its uppercase is never
reducible and the freeNormalize method will never affect a
string of one character, therefore the loop will never terminate.

After getting the holistic understanding, we searched for
previous studies of such vulnerabilities and found that these
types of vulnerabilities are known to abound in codes for
localization (which is exactly what the relevant code in the
case study is for) and actually a patent is granted to the
Honeywell Corporation for a method for detecting, analyzing,
and mitigating similar vulnerabilities [24].

V. CONCLUSION

Broadly speaking program analysis techniques can be di-
vided into two main camps: static analysis and dynamic
analysis. Static analysis can be efficient but it is imprecise.
Dynamic analysis is precise but it is inefficient. Because of
diametrically opposite tradeoffs, combining static and dynamic
analyses opens the possibility to have the best of both worlds.
However, how to do combine static and dynamic analyses
effectively is a challenge. The Mockingbird framework is
designed to address this challenge. The framework represents
a major engineering effort involving integration of existing
static analysis and fuzzing tools and the development of an
innovative component Object Mocker. The Object Mocker can
mock any Java object. A case study using a DARPA challenge
application is presented to illustrate how the framework can
be effectively applied in practice.

REFERENCES

[1] B. Holland, G. R. Santhanam, P. Awadhutkar, and S. Kothari, “Statically-
informed dynamic analysis tools to detect algorithmic complexity vul-

nerabilities,” in Source Code Analysis and Manipulation (SCAM), 2016
IEEE 16th International Working Conference. IEEE, 2016, pp. 79–84.

[2] DARPA, “Space/Time Analysis for Cybersecurity,” https://www.fbo.gov/
spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html, 2014.

[3] G. R. Santhanam, B. Holland, S. Kothari, and N. Ranade, “Human-on-
the-loop automation for detecting software side-channel vulnerabilities,”
in International Conference on Information Systems Security. Springer,
2017, pp. 209–230.

[4] M. Abliz, “Internet denial of service attacks and defense mechanisms,”
University of Pittsburgh, Department of Computer Science, Technical
Report, pp. 1–50, 2011.

[5] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA 2003: ICSE Workshop on Dynamic Analysis. New Mexico
State University Portland, OR, 2003, pp. 24–27.

[6] W. Le, “Segmented symbolic analysis,” in Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013,
pp. 212–221.

[7] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,
pp. 1–16.

[8] T. Deering, S. Kothari, J. Sauceda, and J. Mathews, “Atlas: A new way
to explore software, build analysis tools,” in Companion Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
Companion 2014. New York, NY, USA: ACM, 2014.

[9] B. Holland, G. R. Santhanam, and S. Kothari, “Transferring state-of-
the-art immutability analyses: Experimentation toolbox and accuracy
benchmark,” in Software Testing, Verification and Validation (ICST),
2017 IEEE International Conference on. IEEE, 2017, pp. 484–491.

[10] B. Holland, P. Awadhutkar, S. Kothari, A. Tamrawi, and J. Mathews,
“Comb: Computing relevant program behaviors.” in Proceedings of the
40th International Conference on Software Engineering (ICSE 2018),
ser. ICSE ’18. IEEE Press, 2018.

[11] M. Zalewski, “american fuzzy lop (2.52b),” http://lcamtuf.coredump.cx/
afl, Mar. 2018.

[12] R. Kersten, K. Luckow, and C. S. Păsăreanu, “Poster: Afl-based fuzzing
for java with kelinci,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 2511–2513.

[13] S. Freeman and N. Pryce, Growing object-oriented software, guided by
tests. Pearson Education, 2009.

[14] A. Tamrawi and S. Kothari, “Projected control graph for accurate and
efficient analysis of safety and security vulnerabilities,” in Software
Engineering Conference (APSEC), 2016 23rd Asia-Pacific. IEEE, 2016,
pp. 113–120.

[15] S. Kothari, P. Awadhutkar, A. Tamrawi, and J. Mathews, “Modeling
lessons from verifying large software systems for safety and security,”
in Proceedings of the 2017 Winter Simulation Conference, 2017.

[16] “Byte buddy,” http://bytebuddy.net, Sept. 2018.
[17] E. Kuleshov, “Using the asm framework to implement common java

bytecode transformation patterns,” Aspect-Oriented Software Develop-
ment, 2007.

[18] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1-3,
pp. 35–45, 2007.

[19] B. Holland, “Computing homomorphic program invariants,” Ph.D. dis-
sertation, Iowa State University, 2018.

[20] N. Voss, “afl-unicorn: Fuzzing arbitrary binary code,” https://github.com/
Battelle/afl-unicorn, Jul. 2018.

[21] T. Kaczanowski, Practical Unit Testing with TestNG and Mockito.
Tomasz Kaczanowski, 2012.

[22] “Artin group,” https://en.wikipedia.org/wiki/Artin_group, Spet. 2018.
[23] P. Awadhutkar, G. R. Santhanam, B. Holland, and S. Kothari, “Intelli-

gence amplifying loop characterizations for detecting algorithmic com-
plexity vulnerabilities,” in 2017 24th Asia-Pacific Software Engineering
Conference (APSEC), vol. 00, Dec. 2017, pp. 249–258.

[24] D. B. Kirk Schloegel, “Method for software vulnerability flow anal-
ysis, generation of vulnerability-covering code, and multi-generation
of functionally-equivalent code,” U.S. Patent US8 407 800B2, Mar. 26,
2013.

